Joshua Bader, Hamed Arianfard, Alberto Peruzzo, Stefania Castelletto
{"title":"碳化硅绝缘体自旋光子界面的分析、最新挑战和能力","authors":"Joshua Bader, Hamed Arianfard, Alberto Peruzzo, Stefania Castelletto","doi":"10.1038/s44310-024-00031-8","DOIUrl":null,"url":null,"abstract":"Silicon-carbide (SiC) is a promising platform for long-distance quantum information transmission via single photons, offering long spin coherence qubits, excellent electronic and optical characteristics and CMOS-compatibility. We review key properties of spin-photon interface components for future deployment on the SiC-on-insulator platform with detailed insights provided for available color centers as well as integrated photonic circuits. The associated challenges to achieve high-fidelity multi-qubit control and photon-mediated entanglement on-chip are elaborated, perspectively.","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44310-024-00031-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis, recent challenges and capabilities of spin-photon interfaces in Silicon carbide-on-insulator\",\"authors\":\"Joshua Bader, Hamed Arianfard, Alberto Peruzzo, Stefania Castelletto\",\"doi\":\"10.1038/s44310-024-00031-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon-carbide (SiC) is a promising platform for long-distance quantum information transmission via single photons, offering long spin coherence qubits, excellent electronic and optical characteristics and CMOS-compatibility. We review key properties of spin-photon interface components for future deployment on the SiC-on-insulator platform with detailed insights provided for available color centers as well as integrated photonic circuits. The associated challenges to achieve high-fidelity multi-qubit control and photon-mediated entanglement on-chip are elaborated, perspectively.\",\"PeriodicalId\":501711,\"journal\":{\"name\":\"npj Nanophotonics\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44310-024-00031-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Nanophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44310-024-00031-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44310-024-00031-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis, recent challenges and capabilities of spin-photon interfaces in Silicon carbide-on-insulator
Silicon-carbide (SiC) is a promising platform for long-distance quantum information transmission via single photons, offering long spin coherence qubits, excellent electronic and optical characteristics and CMOS-compatibility. We review key properties of spin-photon interface components for future deployment on the SiC-on-insulator platform with detailed insights provided for available color centers as well as integrated photonic circuits. The associated challenges to achieve high-fidelity multi-qubit control and photon-mediated entanglement on-chip are elaborated, perspectively.