Suhyeok An, Hyeong-Joo Seo, Dongryul Kim, Ki-Seung Lee, Eunchong Baek, Jun-Su Kim, Soobeom Lee, Chun-Yeol You
{"title":"确定性自旋轨道转矩诱导磁化切换中的非共线性自旋纹理驱动转矩","authors":"Suhyeok An, Hyeong-Joo Seo, Dongryul Kim, Ki-Seung Lee, Eunchong Baek, Jun-Su Kim, Soobeom Lee, Chun-Yeol You","doi":"10.1038/s44306-024-00048-x","DOIUrl":null,"url":null,"abstract":"To reveal the role of chirality on field-free spin–orbit torque (SOT) induced magnetization switching, we propose an existence of z-torque through the formation of noncollinear spin texture during SOT-induced magnetization switching in a laterally two-level perpendicular magnetic anisotropy (PMA) system. For the investigation of torque, we simulate magnetization dynamics in the two-level PMA system with SOT, which generates the noncollinear spin texture. From the spatial distribution of magnetic energy, we reveal the additional z-directional torque contribution in the noncollinear spin texture, which is unexpected in the conventional SOT-induced magnetization switching in collinear spin texture. The z-directional torque originates from the interaction between the chirality of the noncollinear spin texture and the interfacial Dzyaloshinskii-Moriya interaction of the system. Furthermore, the experimental observation of the asymmetric magnetization switching to the direction of the current flow in the two-level PMA system supports our theoretical expectation.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00048-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Noncollinear spin texture-driven torque in deterministic spin–orbit torque-induced magnetization switching\",\"authors\":\"Suhyeok An, Hyeong-Joo Seo, Dongryul Kim, Ki-Seung Lee, Eunchong Baek, Jun-Su Kim, Soobeom Lee, Chun-Yeol You\",\"doi\":\"10.1038/s44306-024-00048-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To reveal the role of chirality on field-free spin–orbit torque (SOT) induced magnetization switching, we propose an existence of z-torque through the formation of noncollinear spin texture during SOT-induced magnetization switching in a laterally two-level perpendicular magnetic anisotropy (PMA) system. For the investigation of torque, we simulate magnetization dynamics in the two-level PMA system with SOT, which generates the noncollinear spin texture. From the spatial distribution of magnetic energy, we reveal the additional z-directional torque contribution in the noncollinear spin texture, which is unexpected in the conventional SOT-induced magnetization switching in collinear spin texture. The z-directional torque originates from the interaction between the chirality of the noncollinear spin texture and the interfacial Dzyaloshinskii-Moriya interaction of the system. Furthermore, the experimental observation of the asymmetric magnetization switching to the direction of the current flow in the two-level PMA system supports our theoretical expectation.\",\"PeriodicalId\":501713,\"journal\":{\"name\":\"npj Spintronics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44306-024-00048-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Spintronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44306-024-00048-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00048-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
为了揭示手性对无场自旋轨道力矩(SOT)诱导的磁化切换的作用,我们提出了在横向两级垂直磁各向异性(PMA)系统中,通过在 SOT 诱导的磁化切换过程中形成非共线性自旋纹理而存在 z 扭矩。为了研究转矩,我们模拟了带有 SOT 的两级 PMA 系统中的磁化动态,SOT 会产生非线性自旋纹理。通过磁能的空间分布,我们揭示了非共线性自旋纹理中额外的 z 方向转矩贡献,这在传统的 SOT 诱导的共线性自旋纹理磁化切换中是意想不到的。z方向转矩源于非共线性自旋纹理的手性与系统的界面Dzyaloshinskii-Moriya相互作用。此外,在两级 PMA 系统中观察到的非对称磁化向电流方向切换的实验结果也支持了我们的理论预期。
Noncollinear spin texture-driven torque in deterministic spin–orbit torque-induced magnetization switching
To reveal the role of chirality on field-free spin–orbit torque (SOT) induced magnetization switching, we propose an existence of z-torque through the formation of noncollinear spin texture during SOT-induced magnetization switching in a laterally two-level perpendicular magnetic anisotropy (PMA) system. For the investigation of torque, we simulate magnetization dynamics in the two-level PMA system with SOT, which generates the noncollinear spin texture. From the spatial distribution of magnetic energy, we reveal the additional z-directional torque contribution in the noncollinear spin texture, which is unexpected in the conventional SOT-induced magnetization switching in collinear spin texture. The z-directional torque originates from the interaction between the chirality of the noncollinear spin texture and the interfacial Dzyaloshinskii-Moriya interaction of the system. Furthermore, the experimental observation of the asymmetric magnetization switching to the direction of the current flow in the two-level PMA system supports our theoretical expectation.