通过改进文本标签优化实现特定领域提示学习

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-06-12 DOI:10.1109/TMM.2024.3413318
Liangchen Liu;Nannan Wang;Decheng Liu;Xi Yang;Xinbo Gao;Tongliang Liu
{"title":"通过改进文本标签优化实现特定领域提示学习","authors":"Liangchen Liu;Nannan Wang;Decheng Liu;Xi Yang;Xinbo Gao;Tongliang Liu","doi":"10.1109/TMM.2024.3413318","DOIUrl":null,"url":null,"abstract":"Prompt learning has emerged as a thriving parameter-efficient fine-tuning technique for adapting pre-trained vision-language models (VLMs) to various downstream tasks. However, existing prompt learning approaches still exhibit limited capability for adapting foundational VLMs to specific domains that require specialized and expert-level knowledge. Since this kind of specific knowledge is primarily embedded in the pre-defined text labels, we infer that foundational VLMs cannot directly interpret semantic meaningful information from these specific text labels, which causes the above limitation. From this perspective, this paper additionally models text labels with learnable tokens and casts this operation into traditional prompt learning framework. By optimizing label tokens, semantic meaningful text labels are automatically learned for each class. Nevertheless, directly optimizing text label still remains two critical problems, i.e., insufficient optimization and biased optimization. We further address these problems by proposing Modality Interaction Text Label Optimization (MITLOp) and Color-based Consistency Augmentation (CCAug) respectively, thereby effectively improving the quality of the optimized text labels. Extensive experiments indicate that our proposed method achieves significant improvements in VLM adaptation on specific domains.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10805-10815"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Specific Domain Prompt Learning via Improved Text Label Optimization\",\"authors\":\"Liangchen Liu;Nannan Wang;Decheng Liu;Xi Yang;Xinbo Gao;Tongliang Liu\",\"doi\":\"10.1109/TMM.2024.3413318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prompt learning has emerged as a thriving parameter-efficient fine-tuning technique for adapting pre-trained vision-language models (VLMs) to various downstream tasks. However, existing prompt learning approaches still exhibit limited capability for adapting foundational VLMs to specific domains that require specialized and expert-level knowledge. Since this kind of specific knowledge is primarily embedded in the pre-defined text labels, we infer that foundational VLMs cannot directly interpret semantic meaningful information from these specific text labels, which causes the above limitation. From this perspective, this paper additionally models text labels with learnable tokens and casts this operation into traditional prompt learning framework. By optimizing label tokens, semantic meaningful text labels are automatically learned for each class. Nevertheless, directly optimizing text label still remains two critical problems, i.e., insufficient optimization and biased optimization. We further address these problems by proposing Modality Interaction Text Label Optimization (MITLOp) and Color-based Consistency Augmentation (CCAug) respectively, thereby effectively improving the quality of the optimized text labels. Extensive experiments indicate that our proposed method achieves significant improvements in VLM adaptation on specific domains.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"26 \",\"pages\":\"10805-10815\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10555230/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10555230/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

提示学习已成为一种蓬勃发展的参数高效微调技术,用于将预先训练好的视觉语言模型(VLM)调整到各种下游任务。然而,现有的提示学习方法在将基础视觉语言模型调整到需要专业和专家级知识的特定领域时,仍表现出有限的能力。由于这类特定知识主要蕴含在预定义的文本标签中,我们推断基础 VLM 无法直接解释这些特定文本标签中的语义信息,这就造成了上述局限性。从这个角度出发,本文用可学习标记对文本标签进行额外建模,并将这一操作引入传统的提示学习框架。通过优化标签标记,每个类别的有语义的文本标签都能被自动学习。然而,直接优化文本标签仍然存在两个关键问题,即优化不足和优化有偏差。针对这些问题,我们分别提出了模态交互文本标签优化(MITLOp)和基于颜色的一致性增强(CCAug)方法,从而有效提高了优化文本标签的质量。广泛的实验表明,我们提出的方法显著改善了特定领域的 VLM 适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Specific Domain Prompt Learning via Improved Text Label Optimization
Prompt learning has emerged as a thriving parameter-efficient fine-tuning technique for adapting pre-trained vision-language models (VLMs) to various downstream tasks. However, existing prompt learning approaches still exhibit limited capability for adapting foundational VLMs to specific domains that require specialized and expert-level knowledge. Since this kind of specific knowledge is primarily embedded in the pre-defined text labels, we infer that foundational VLMs cannot directly interpret semantic meaningful information from these specific text labels, which causes the above limitation. From this perspective, this paper additionally models text labels with learnable tokens and casts this operation into traditional prompt learning framework. By optimizing label tokens, semantic meaningful text labels are automatically learned for each class. Nevertheless, directly optimizing text label still remains two critical problems, i.e., insufficient optimization and biased optimization. We further address these problems by proposing Modality Interaction Text Label Optimization (MITLOp) and Color-based Consistency Augmentation (CCAug) respectively, thereby effectively improving the quality of the optimized text labels. Extensive experiments indicate that our proposed method achieves significant improvements in VLM adaptation on specific domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Phase-shifted tACS can modulate cortical alpha waves in human subjects. Guest Editorial Introduction to the Issue on Pre-Trained Models for Multi-Modality Understanding Zero-Shot Video Moment Retrieval With Angular Reconstructive Text Embeddings Toward Efficient Video Compression Artifact Detection and Removal: A Benchmark Dataset Human-Centric Behavior Description in Videos: New Benchmark and Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1