利用基于 SAM 的结构先验和引导进行低照度图像增强

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-06-13 DOI:10.1109/TMM.2024.3414328
Guanlin Li;Bin Zhao;Xuelong Li
{"title":"利用基于 SAM 的结构先验和引导进行低照度图像增强","authors":"Guanlin Li;Bin Zhao;Xuelong Li","doi":"10.1109/TMM.2024.3414328","DOIUrl":null,"url":null,"abstract":"Low-light images often suffer from severe detail lost in darker areas and non-uniform illumination distribution across distinct regions. Thus, structure modeling and region-specific illumination manipulation are crucial for high-quality enhanced image generation. However, previous methods encounter limitations in exploring robust structure priors and lack adequate modeling of illumination relationships among different regions, resulting in structure artifacts and color deviations. To alleviate this limitation, we propose a Segmentation-Guided Framework (SGF) which integrates the constructed robust segmentation priors to guide the enhancement process. Specifically, SGF first constructs a robust image-level edge prior based on the segmentation results of the Segment Anything Model (SAM) in a zero-shot manner. Then, we generate lighted-up region-aware feature-level prior by incorporating region-aware dynamic convolution. To adequately model long-distance illumination interactions across distinct regions, we design a segmentation-guided transformer block (SGTB), which utilizes the lighted-up region-aware feature-level prior to guide self-attention calculation. By arranging the SGTBs in a symmetric hierarchical structure, we derive a segmentation-guided enhancement module that operates under the guidance of both the image and feature-level priors. Comprehensive experimental results show that our SGF performs remarkably in both quantitative evaluation and visual comparison.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10854-10866"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Light Image Enhancement With SAM-Based Structure Priors and Guidance\",\"authors\":\"Guanlin Li;Bin Zhao;Xuelong Li\",\"doi\":\"10.1109/TMM.2024.3414328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-light images often suffer from severe detail lost in darker areas and non-uniform illumination distribution across distinct regions. Thus, structure modeling and region-specific illumination manipulation are crucial for high-quality enhanced image generation. However, previous methods encounter limitations in exploring robust structure priors and lack adequate modeling of illumination relationships among different regions, resulting in structure artifacts and color deviations. To alleviate this limitation, we propose a Segmentation-Guided Framework (SGF) which integrates the constructed robust segmentation priors to guide the enhancement process. Specifically, SGF first constructs a robust image-level edge prior based on the segmentation results of the Segment Anything Model (SAM) in a zero-shot manner. Then, we generate lighted-up region-aware feature-level prior by incorporating region-aware dynamic convolution. To adequately model long-distance illumination interactions across distinct regions, we design a segmentation-guided transformer block (SGTB), which utilizes the lighted-up region-aware feature-level prior to guide self-attention calculation. By arranging the SGTBs in a symmetric hierarchical structure, we derive a segmentation-guided enhancement module that operates under the guidance of both the image and feature-level priors. Comprehensive experimental results show that our SGF performs remarkably in both quantitative evaluation and visual comparison.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"26 \",\"pages\":\"10854-10866\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10557144/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10557144/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

低照度图像往往存在暗部细节严重丢失和不同区域光照分布不均匀的问题。因此,结构建模和特定区域的光照处理对于生成高质量的增强图像至关重要。然而,以往的方法在探索稳健的结构先验方面存在局限性,对不同区域之间的光照关系缺乏足够的建模,从而导致结构伪影和色彩偏差。为了缓解这一局限性,我们提出了一种分割引导框架(SGF),该框架整合了构建的稳健分割先验来引导增强过程。具体来说,SGF 首先以零拍方式,根据任何分割模型(SAM)的分割结果,构建稳健的图像级边缘先验。然后,我们结合区域感知动态卷积,生成亮化的区域感知特征级先验。为了充分模拟不同区域之间的远距离光照相互作用,我们设计了一个分割引导转换器块(SGTB),利用点亮的区域感知特征级先验来引导自注意力计算。通过将 SGTB 安排在一个对称的分层结构中,我们得到了一个在图像和特征级先验指导下运行的分割引导增强模块。综合实验结果表明,我们的 SGF 在定量评估和视觉对比方面都表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Light Image Enhancement With SAM-Based Structure Priors and Guidance
Low-light images often suffer from severe detail lost in darker areas and non-uniform illumination distribution across distinct regions. Thus, structure modeling and region-specific illumination manipulation are crucial for high-quality enhanced image generation. However, previous methods encounter limitations in exploring robust structure priors and lack adequate modeling of illumination relationships among different regions, resulting in structure artifacts and color deviations. To alleviate this limitation, we propose a Segmentation-Guided Framework (SGF) which integrates the constructed robust segmentation priors to guide the enhancement process. Specifically, SGF first constructs a robust image-level edge prior based on the segmentation results of the Segment Anything Model (SAM) in a zero-shot manner. Then, we generate lighted-up region-aware feature-level prior by incorporating region-aware dynamic convolution. To adequately model long-distance illumination interactions across distinct regions, we design a segmentation-guided transformer block (SGTB), which utilizes the lighted-up region-aware feature-level prior to guide self-attention calculation. By arranging the SGTBs in a symmetric hierarchical structure, we derive a segmentation-guided enhancement module that operates under the guidance of both the image and feature-level priors. Comprehensive experimental results show that our SGF performs remarkably in both quantitative evaluation and visual comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Phase-shifted tACS can modulate cortical alpha waves in human subjects. Guest Editorial Introduction to the Issue on Pre-Trained Models for Multi-Modality Understanding Zero-Shot Video Moment Retrieval With Angular Reconstructive Text Embeddings Toward Efficient Video Compression Artifact Detection and Removal: A Benchmark Dataset Human-Centric Behavior Description in Videos: New Benchmark and Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1