基于 SOT-MRAM 的高能效、可靠的二进制神经网络加速设计

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-08-06 DOI:10.1109/TED.2024.3435810
Ahmed Shaban;Shreshtha Gothalyan;Tuo-Hung Hou;Manan Suri
{"title":"基于 SOT-MRAM 的高能效、可靠的二进制神经网络加速设计","authors":"Ahmed Shaban;Shreshtha Gothalyan;Tuo-Hung Hou;Manan Suri","doi":"10.1109/TED.2024.3435810","DOIUrl":null,"url":null,"abstract":"Binary neural networks (BNNs) are a highly promising option for realizing lightweight and efficient computing for applications on the edge. Spin-orbit torque MRAM (SOT-MRAM) has emerged as an attractive option for realizing fast and energy-efficient design. In this work, we propose a 4T-2R memory cell using viable and experimentally demonstrated SOT magnetic tunnel junction device (SOT-MTJ) for realizing highly energy-efficient XNOR operation (primary operation in BNNs). We also propose a pulse scheme to mitigate the inherent challenge of increased write error rate (WER) in SOT-MRAM device while achieving energy-efficient write. We perform 1000-point Monte Carlo (MC) simulations and demonstrate a bit error rate (BER) of 0.1–\n<inline-formula> <tex-math>$5\\times {10}^{-{3}}$ </tex-math></inline-formula>\n with extremely low energy consumption of ~4.8 fJ per XNOR operation. We also perform system-level simulations to show robustness of our cell by incorporating the asymmetric BERs resulting due to thermal noise and process variations (PVs) on CIFAR-10 classification task using VGG network. Our proposed cell holds potential for highly energy-efficient and error-tolerant BNNs on edge devices.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SOT-MRAM-Based Design for Energy-Efficient and Reliable Binary Neural Network Acceleration\",\"authors\":\"Ahmed Shaban;Shreshtha Gothalyan;Tuo-Hung Hou;Manan Suri\",\"doi\":\"10.1109/TED.2024.3435810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binary neural networks (BNNs) are a highly promising option for realizing lightweight and efficient computing for applications on the edge. Spin-orbit torque MRAM (SOT-MRAM) has emerged as an attractive option for realizing fast and energy-efficient design. In this work, we propose a 4T-2R memory cell using viable and experimentally demonstrated SOT magnetic tunnel junction device (SOT-MTJ) for realizing highly energy-efficient XNOR operation (primary operation in BNNs). We also propose a pulse scheme to mitigate the inherent challenge of increased write error rate (WER) in SOT-MRAM device while achieving energy-efficient write. We perform 1000-point Monte Carlo (MC) simulations and demonstrate a bit error rate (BER) of 0.1–\\n<inline-formula> <tex-math>$5\\\\times {10}^{-{3}}$ </tex-math></inline-formula>\\n with extremely low energy consumption of ~4.8 fJ per XNOR operation. We also perform system-level simulations to show robustness of our cell by incorporating the asymmetric BERs resulting due to thermal noise and process variations (PVs) on CIFAR-10 classification task using VGG network. Our proposed cell holds potential for highly energy-efficient and error-tolerant BNNs on edge devices.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10628035/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10628035/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

二元神经网络(BNN)是为边缘应用实现轻量级高效计算的一种极具前景的选择。自旋轨道力矩 MRAM(SOT-MRAM)已成为实现快速、高能效设计的一种极具吸引力的选择。在这项工作中,我们提出了一种 4T-2R 存储单元,它采用了可行并经实验验证的 SOT 磁隧道结器件 (SOT-MTJ),可实现高能效的 XNOR 操作(BNN 中的主要操作)。我们还提出了一种脉冲方案,在实现高能效写入的同时,缓解 SOT-MRAM 器件写入错误率 (WER) 增加的固有挑战。我们进行了 1000 点蒙特卡罗(MC)仿真,证明误码率(BER)为 0.1- $5\times {10}^{-{3}}$ ,每次 XNOR 操作的能耗极低,仅为 ~4.8 fJ。我们还利用 VGG 网络在 CIFAR-10 分类任务中结合热噪声和工艺变化 (PV) 导致的非对称误码率进行了系统级仿真,以显示我们的单元的鲁棒性。我们提出的单元具有在边缘设备上实现高能效和容错 BNN 的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SOT-MRAM-Based Design for Energy-Efficient and Reliable Binary Neural Network Acceleration
Binary neural networks (BNNs) are a highly promising option for realizing lightweight and efficient computing for applications on the edge. Spin-orbit torque MRAM (SOT-MRAM) has emerged as an attractive option for realizing fast and energy-efficient design. In this work, we propose a 4T-2R memory cell using viable and experimentally demonstrated SOT magnetic tunnel junction device (SOT-MTJ) for realizing highly energy-efficient XNOR operation (primary operation in BNNs). We also propose a pulse scheme to mitigate the inherent challenge of increased write error rate (WER) in SOT-MRAM device while achieving energy-efficient write. We perform 1000-point Monte Carlo (MC) simulations and demonstrate a bit error rate (BER) of 0.1– $5\times {10}^{-{3}}$ with extremely low energy consumption of ~4.8 fJ per XNOR operation. We also perform system-level simulations to show robustness of our cell by incorporating the asymmetric BERs resulting due to thermal noise and process variations (PVs) on CIFAR-10 classification task using VGG network. Our proposed cell holds potential for highly energy-efficient and error-tolerant BNNs on edge devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1