利用可再生能源进行水热经济调度的数据驱动多级分布式鲁棒编程

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS IEEE Transactions on Sustainable Energy Pub Date : 2024-06-18 DOI:10.1109/TSTE.2024.3416210
Xiaosheng Zhang;Tao Ding;Yang Xiao;Hongji Zhang;Jinbo Liu;Yishen Wang
{"title":"利用可再生能源进行水热经济调度的数据驱动多级分布式鲁棒编程","authors":"Xiaosheng Zhang;Tao Ding;Yang Xiao;Hongji Zhang;Jinbo Liu;Yishen Wang","doi":"10.1109/TSTE.2024.3416210","DOIUrl":null,"url":null,"abstract":"The multistage solution is very important to achieve optimal hydrothermal economic dispatch considering the uncertainty of renewable energy sources. In data-driven settings, only some historical trajectories are available and the probability distribution is unknown. A data-driven scheme for multistage stochastic hydrothermal economic dispatch with Markovian uncertainties is proposed in this paper. Then a data-driven distributionally robust stochastic dual dynamic programming (DDR-SDDP) is proposed to tackle the corresponding computational intractability, where the conditional probability distributions are estimated by using kernel regression. The out-of-sample performances are improved by distributionally robust optimization on a Wasserstein distance-based ambiguity set. Furthermore, a scenario aggregation method is designed to reduce the computational burden. Numerical results for a practical regional power system in China are presented and analyzed to verify the effectiveness of the proposed method.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2322-2335"},"PeriodicalIF":8.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Multistage Distribuionally Robust Programming to Hydrothermal Economic Dispatch With Renewable Energy Sources\",\"authors\":\"Xiaosheng Zhang;Tao Ding;Yang Xiao;Hongji Zhang;Jinbo Liu;Yishen Wang\",\"doi\":\"10.1109/TSTE.2024.3416210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multistage solution is very important to achieve optimal hydrothermal economic dispatch considering the uncertainty of renewable energy sources. In data-driven settings, only some historical trajectories are available and the probability distribution is unknown. A data-driven scheme for multistage stochastic hydrothermal economic dispatch with Markovian uncertainties is proposed in this paper. Then a data-driven distributionally robust stochastic dual dynamic programming (DDR-SDDP) is proposed to tackle the corresponding computational intractability, where the conditional probability distributions are estimated by using kernel regression. The out-of-sample performances are improved by distributionally robust optimization on a Wasserstein distance-based ambiguity set. Furthermore, a scenario aggregation method is designed to reduce the computational burden. Numerical results for a practical regional power system in China are presented and analyzed to verify the effectiveness of the proposed method.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"15 4\",\"pages\":\"2322-2335\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10561496/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10561496/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

考虑到可再生能源的不确定性,多阶段解决方案对于实现最佳水热经济调度非常重要。在数据驱动设置中,只有一些历史轨迹可用,而概率分布是未知的。本文提出了一种数据驱动的马尔可夫不确定性多阶段随机水热经济调度方案。然后提出了数据驱动的分布鲁棒随机双动态程序设计(DDR-SDDP)来解决相应的计算难点,其中条件概率分布是通过核回归来估计的。通过在基于 Wasserstein 距离的模糊集上进行分布稳健优化,样本外性能得到改善。此外,还设计了一种情景汇总方法,以减轻计算负担。为了验证所提方法的有效性,我们展示并分析了中国一个实际区域电力系统的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Multistage Distribuionally Robust Programming to Hydrothermal Economic Dispatch With Renewable Energy Sources
The multistage solution is very important to achieve optimal hydrothermal economic dispatch considering the uncertainty of renewable energy sources. In data-driven settings, only some historical trajectories are available and the probability distribution is unknown. A data-driven scheme for multistage stochastic hydrothermal economic dispatch with Markovian uncertainties is proposed in this paper. Then a data-driven distributionally robust stochastic dual dynamic programming (DDR-SDDP) is proposed to tackle the corresponding computational intractability, where the conditional probability distributions are estimated by using kernel regression. The out-of-sample performances are improved by distributionally robust optimization on a Wasserstein distance-based ambiguity set. Furthermore, a scenario aggregation method is designed to reduce the computational burden. Numerical results for a practical regional power system in China are presented and analyzed to verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
期刊最新文献
Introducing IEEE Collabratec Table of Contents IEEE Transactions on Sustainable Energy Information for Authors 2024 Index IEEE Transactions on Sustainable Energy Vol. 15 Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1