Francesca Bonizzoni, Philip Freese, Daniel Peterseim
{"title":"对流主导扩散问题的超局部正交分解","authors":"Francesca Bonizzoni, Philip Freese, Daniel Peterseim","doi":"10.1007/s10543-024-01035-8","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel multi-scale method for convection-dominated diffusion problems in the regime of large Péclet numbers. The method involves applying the solution operator to piecewise constant right-hand sides on an arbitrary coarse mesh, which defines a finite-dimensional coarse ansatz space with favorable approximation properties. For some relevant error measures, including the <span>\\(L^2\\)</span>-norm, the Galerkin projection onto this generalized finite element space even yields <span>\\(\\varepsilon \\)</span>-independent error bounds, <span>\\(\\varepsilon \\)</span> being the singular perturbation parameter. By constructing an approximate local basis, the approach becomes a novel multi-scale method in the spirit of the Super-Localized Orthogonal Decomposition (SLOD). The error caused by basis localization can be estimated in an a posteriori way. In contrast to existing multi-scale methods, numerical experiments indicate <span>\\(\\varepsilon \\)</span>-robust convergence without pre-asymptotic effects even in the under-resolved regime of large mesh Péclet numbers.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"19 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-localized orthogonal decomposition for convection-dominated diffusion problems\",\"authors\":\"Francesca Bonizzoni, Philip Freese, Daniel Peterseim\",\"doi\":\"10.1007/s10543-024-01035-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a novel multi-scale method for convection-dominated diffusion problems in the regime of large Péclet numbers. The method involves applying the solution operator to piecewise constant right-hand sides on an arbitrary coarse mesh, which defines a finite-dimensional coarse ansatz space with favorable approximation properties. For some relevant error measures, including the <span>\\\\(L^2\\\\)</span>-norm, the Galerkin projection onto this generalized finite element space even yields <span>\\\\(\\\\varepsilon \\\\)</span>-independent error bounds, <span>\\\\(\\\\varepsilon \\\\)</span> being the singular perturbation parameter. By constructing an approximate local basis, the approach becomes a novel multi-scale method in the spirit of the Super-Localized Orthogonal Decomposition (SLOD). The error caused by basis localization can be estimated in an a posteriori way. In contrast to existing multi-scale methods, numerical experiments indicate <span>\\\\(\\\\varepsilon \\\\)</span>-robust convergence without pre-asymptotic effects even in the under-resolved regime of large mesh Péclet numbers.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01035-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01035-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Super-localized orthogonal decomposition for convection-dominated diffusion problems
This paper presents a novel multi-scale method for convection-dominated diffusion problems in the regime of large Péclet numbers. The method involves applying the solution operator to piecewise constant right-hand sides on an arbitrary coarse mesh, which defines a finite-dimensional coarse ansatz space with favorable approximation properties. For some relevant error measures, including the \(L^2\)-norm, the Galerkin projection onto this generalized finite element space even yields \(\varepsilon \)-independent error bounds, \(\varepsilon \) being the singular perturbation parameter. By constructing an approximate local basis, the approach becomes a novel multi-scale method in the spirit of the Super-Localized Orthogonal Decomposition (SLOD). The error caused by basis localization can be estimated in an a posteriori way. In contrast to existing multi-scale methods, numerical experiments indicate \(\varepsilon \)-robust convergence without pre-asymptotic effects even in the under-resolved regime of large mesh Péclet numbers.
期刊介绍:
The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.