不可持续的生产模式与疾病的出现:高致病性禽流感 H5N1 的典型案例。

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-11-15 Epub Date: 2024-08-10 DOI:10.1016/j.scitotenv.2024.175389
Pablo I Plaza, Sergio A Lambertucci
{"title":"不可持续的生产模式与疾病的出现:高致病性禽流感 H5N1 的典型案例。","authors":"Pablo I Plaza, Sergio A Lambertucci","doi":"10.1016/j.scitotenv.2024.175389","DOIUrl":null,"url":null,"abstract":"<p><p>Current food production systems are causing severe environmental damage, including the emergence of dangerous pathogens that put humans and wildlife at risk. Several dangerous pathogens (e.g., the 2009 A(H1N1) Influenza Virus, Nipah virus) have emerged associated with the dominant intensive food production systems. In this article, we use the case of the emergence and spillover of the Highly Pathogenic Avian Influenza virus H5N1 (hereafter, H5N1) to illustrate how intensive food production methods provide a breeding ground for dangerous pathogens. We also discuss how emerging pathogens, such as H5N1, may affect not only ecosystem health but also human well-being and the economy. The current H5N1 panzootic (2020-2024) is producing a catastrophic impact: the millions of domestic birds affected by this virus have led to significant economic losses globally, and wild birds and mammals have suffered alarming mortalities, with the associated loss of their material and non-material ecosystem services. Transformative actions are required to reduce the emergence and impact of pathogens such as H5N1; we particularly need to reconsider the ways we are producing food. Governments should redirect funds to the promotion of alternative production systems that reduce the risk of new emerging pathogens and produce environmentally healthy food. These systems need to have a positive relationship with nature rather than being systems based on business as usual to the detriment of the environment. Sustainable food production systems may save many lives, economies, and biodiversity, together with the ecosystem services species provide.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsustainable production patterns and disease emergence: The paradigmatic case of Highly Pathogenic Avian Influenza H5N1.\",\"authors\":\"Pablo I Plaza, Sergio A Lambertucci\",\"doi\":\"10.1016/j.scitotenv.2024.175389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current food production systems are causing severe environmental damage, including the emergence of dangerous pathogens that put humans and wildlife at risk. Several dangerous pathogens (e.g., the 2009 A(H1N1) Influenza Virus, Nipah virus) have emerged associated with the dominant intensive food production systems. In this article, we use the case of the emergence and spillover of the Highly Pathogenic Avian Influenza virus H5N1 (hereafter, H5N1) to illustrate how intensive food production methods provide a breeding ground for dangerous pathogens. We also discuss how emerging pathogens, such as H5N1, may affect not only ecosystem health but also human well-being and the economy. The current H5N1 panzootic (2020-2024) is producing a catastrophic impact: the millions of domestic birds affected by this virus have led to significant economic losses globally, and wild birds and mammals have suffered alarming mortalities, with the associated loss of their material and non-material ecosystem services. Transformative actions are required to reduce the emergence and impact of pathogens such as H5N1; we particularly need to reconsider the ways we are producing food. Governments should redirect funds to the promotion of alternative production systems that reduce the risk of new emerging pathogens and produce environmentally healthy food. These systems need to have a positive relationship with nature rather than being systems based on business as usual to the detriment of the environment. Sustainable food production systems may save many lives, economies, and biodiversity, together with the ecosystem services species provide.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.175389\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175389","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

当前的食品生产系统正在对环境造成严重破坏,包括出现危险的病原体,使人类和野生动物面临危险。一些危险病原体的出现(如甲型 H1N1 流感病毒、猪繁殖与呼吸综合征病毒)与占主导地位的集约化粮食生产系统有关。在本文中,我们以高致病性禽流感病毒 H5N1(以下简称 H5N1)的出现和蔓延为例,说明集约型食品生产方式如何为危险病原体提供滋生土壤。我们还讨论了 H5N1 等新出现的病原体不仅会影响生态系统健康,还会影响人类福祉和经济。当前的 H5N1 泛流行病(2020-2024 年)正在产生灾难性影响:数百万家禽受到该病毒的影响,导致全球经济遭受重大损失,野生鸟类和哺乳动物的死亡人数惊人,其物质和非物质生态系统服务也随之丧失。必须采取变革性行动,减少 H5N1 等病原体的出现和影响;我们尤其需要重新考虑我们的粮食生产方式。各国政府应将资金转用于推广替代生产系统,以降低新病原体出现的风险,并生产对环境健康有益的食物。这些系统需要与大自然建立积极的关系,而不是以损害环境的 "一切照旧 "为基础的系统。可持续的粮食生产系统可以拯救许多生命、经济和生物多样性,以及物种提供的生态系统服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsustainable production patterns and disease emergence: The paradigmatic case of Highly Pathogenic Avian Influenza H5N1.

Current food production systems are causing severe environmental damage, including the emergence of dangerous pathogens that put humans and wildlife at risk. Several dangerous pathogens (e.g., the 2009 A(H1N1) Influenza Virus, Nipah virus) have emerged associated with the dominant intensive food production systems. In this article, we use the case of the emergence and spillover of the Highly Pathogenic Avian Influenza virus H5N1 (hereafter, H5N1) to illustrate how intensive food production methods provide a breeding ground for dangerous pathogens. We also discuss how emerging pathogens, such as H5N1, may affect not only ecosystem health but also human well-being and the economy. The current H5N1 panzootic (2020-2024) is producing a catastrophic impact: the millions of domestic birds affected by this virus have led to significant economic losses globally, and wild birds and mammals have suffered alarming mortalities, with the associated loss of their material and non-material ecosystem services. Transformative actions are required to reduce the emergence and impact of pathogens such as H5N1; we particularly need to reconsider the ways we are producing food. Governments should redirect funds to the promotion of alternative production systems that reduce the risk of new emerging pathogens and produce environmentally healthy food. These systems need to have a positive relationship with nature rather than being systems based on business as usual to the detriment of the environment. Sustainable food production systems may save many lives, economies, and biodiversity, together with the ecosystem services species provide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Integrating Doppler LiDAR and machine learning into land-use regression model for assessing contribution of vertical atmospheric processes to urban PM2.5 pollution. Discarded fishing net pollution in coastal areas of Bangladesh. Characterizing nitrogen deposited on urban road surfaces: Implication for stormwater runoff pollution control. Potential mechanisms of ischemic stroke induced by heat exposure. Valorization of seafood waste: a review of life cycle assessment studies in biorefinery applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1