{"title":"超导掺杂拓扑绝缘体中的向列性方向和结点的磁化控制。","authors":"D A Khokhlov, R S Akzyanov, A V Kapranov","doi":"10.1088/1361-648X/ad6e49","DOIUrl":null,"url":null,"abstract":"<p><p>We study the effects of magnetisation on the properties of the doped topological insulator of theBi2Se3family with nematic superconductivity. We found that the direction of the in-plane magnetisation fixes the direction of the nematicity in the system. The chiral state is more favourable than the nematic state for large values of out-of-plane magnetisation. Overall, the critical temperature of the nematic superconductivity is robust against magnetisation. We explore in detail the spectrum of the system with the pinned direction of the nematic order parameterΔy. Without magnetisation, there is a full gap in the spectrum because of finite hexagonal warping. At an out-of-plane<i>m<sub>z</sub></i>or orthogonal in-plane<i>m<sub>x</sub></i>magnetisation that is strong enough, the spectrum is closed at the nodal points that are split by the magnetisation. Flat Majorana surface states connect such split bulk nodal points. Parallel magnetisation<i>m<sub>y</sub></i>lifts the nodal points and opens a full gap in the spectrum. We discuss relevant experiments and propose experimental verifications of our theory.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetisation control of the nematicity direction and nodal points in a superconducting doped topological insulator.\",\"authors\":\"D A Khokhlov, R S Akzyanov, A V Kapranov\",\"doi\":\"10.1088/1361-648X/ad6e49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the effects of magnetisation on the properties of the doped topological insulator of theBi2Se3family with nematic superconductivity. We found that the direction of the in-plane magnetisation fixes the direction of the nematicity in the system. The chiral state is more favourable than the nematic state for large values of out-of-plane magnetisation. Overall, the critical temperature of the nematic superconductivity is robust against magnetisation. We explore in detail the spectrum of the system with the pinned direction of the nematic order parameterΔy. Without magnetisation, there is a full gap in the spectrum because of finite hexagonal warping. At an out-of-plane<i>m<sub>z</sub></i>or orthogonal in-plane<i>m<sub>x</sub></i>magnetisation that is strong enough, the spectrum is closed at the nodal points that are split by the magnetisation. Flat Majorana surface states connect such split bulk nodal points. Parallel magnetisation<i>m<sub>y</sub></i>lifts the nodal points and opens a full gap in the spectrum. We discuss relevant experiments and propose experimental verifications of our theory.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad6e49\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad6e49","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Magnetisation control of the nematicity direction and nodal points in a superconducting doped topological insulator.
We study the effects of magnetisation on the properties of the doped topological insulator of theBi2Se3family with nematic superconductivity. We found that the direction of the in-plane magnetisation fixes the direction of the nematicity in the system. The chiral state is more favourable than the nematic state for large values of out-of-plane magnetisation. Overall, the critical temperature of the nematic superconductivity is robust against magnetisation. We explore in detail the spectrum of the system with the pinned direction of the nematic order parameterΔy. Without magnetisation, there is a full gap in the spectrum because of finite hexagonal warping. At an out-of-planemzor orthogonal in-planemxmagnetisation that is strong enough, the spectrum is closed at the nodal points that are split by the magnetisation. Flat Majorana surface states connect such split bulk nodal points. Parallel magnetisationmylifts the nodal points and opens a full gap in the spectrum. We discuss relevant experiments and propose experimental verifications of our theory.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.