{"title":"肺鳞状细胞癌中的热蛋白沉积相关基因 GSDMC 可通过激活 AKT/mTOR 通路预示不良预后并促进肿瘤进展。","authors":"Yi Zhang, Yuzhi Wang, Jiamiao Weng, Jianlin Chen, Yue Zheng, Yu Xia, Zhixin Huang, Lilan Zhao, Xiongfeng Chen, Haijun Tang, Yi Huang","doi":"10.1002/mc.23805","DOIUrl":null,"url":null,"abstract":"<p><p>Lung squamous cell carcinoma (LUSC) is one of the most common malignant tumors of the respiratory. Pyroptosis plays an essential role in cancer, but there is limited research investigating pyroptosis in LUSC. In this study, pyroptosis-related genes were observed to have extensive multiomics alterations in LUSC through analysis of the TCGA database. Utilizing machine learning for selection and verifying expression levels, GSDMC was chosen as the critical gene for further experiments. Our research found that GSDMC is overexpressed in LUSC tissues and cells, and is associated with poor prognosis. Knockdown of GSDMC in LUSC inhibits cell proliferation, invasion, metastasis, chemotherapeutic sensitivity, and reduced tumor formation in nude mice, accompanied by downregulation of proliferative and EMT-related protein expression. However, these effects were counteracted in cells where GSDMC is overexpressed. Mechanistically, the oncogenic role of GSDMC is primarily achieved through the activation of the AKT/mTOR pathway, and this effect can be significantly reversed by rapamycin. Finally, SMAD4's interaction with the promoter region of GSDMC results in the suppression of GSDMC expression. In summary, our study through bioinformatics and experimental approaches not only proves that SMAD4 regulates the protumorigenic role of GSDMC through transcriptional targeting, but also indicates the possibility of developing the SMAD4/GSDMC/AKT/mTOR signaling axis as a potential biomarker and treatment target for LUSC.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2218-2236"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyroptosis-related gene GSDMC indicates poor prognosis and promotes tumor progression by activating the AKT/mTOR pathway in lung squamous cell carcinoma.\",\"authors\":\"Yi Zhang, Yuzhi Wang, Jiamiao Weng, Jianlin Chen, Yue Zheng, Yu Xia, Zhixin Huang, Lilan Zhao, Xiongfeng Chen, Haijun Tang, Yi Huang\",\"doi\":\"10.1002/mc.23805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung squamous cell carcinoma (LUSC) is one of the most common malignant tumors of the respiratory. Pyroptosis plays an essential role in cancer, but there is limited research investigating pyroptosis in LUSC. In this study, pyroptosis-related genes were observed to have extensive multiomics alterations in LUSC through analysis of the TCGA database. Utilizing machine learning for selection and verifying expression levels, GSDMC was chosen as the critical gene for further experiments. Our research found that GSDMC is overexpressed in LUSC tissues and cells, and is associated with poor prognosis. Knockdown of GSDMC in LUSC inhibits cell proliferation, invasion, metastasis, chemotherapeutic sensitivity, and reduced tumor formation in nude mice, accompanied by downregulation of proliferative and EMT-related protein expression. However, these effects were counteracted in cells where GSDMC is overexpressed. Mechanistically, the oncogenic role of GSDMC is primarily achieved through the activation of the AKT/mTOR pathway, and this effect can be significantly reversed by rapamycin. Finally, SMAD4's interaction with the promoter region of GSDMC results in the suppression of GSDMC expression. In summary, our study through bioinformatics and experimental approaches not only proves that SMAD4 regulates the protumorigenic role of GSDMC through transcriptional targeting, but also indicates the possibility of developing the SMAD4/GSDMC/AKT/mTOR signaling axis as a potential biomarker and treatment target for LUSC.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"2218-2236\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.23805\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23805","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pyroptosis-related gene GSDMC indicates poor prognosis and promotes tumor progression by activating the AKT/mTOR pathway in lung squamous cell carcinoma.
Lung squamous cell carcinoma (LUSC) is one of the most common malignant tumors of the respiratory. Pyroptosis plays an essential role in cancer, but there is limited research investigating pyroptosis in LUSC. In this study, pyroptosis-related genes were observed to have extensive multiomics alterations in LUSC through analysis of the TCGA database. Utilizing machine learning for selection and verifying expression levels, GSDMC was chosen as the critical gene for further experiments. Our research found that GSDMC is overexpressed in LUSC tissues and cells, and is associated with poor prognosis. Knockdown of GSDMC in LUSC inhibits cell proliferation, invasion, metastasis, chemotherapeutic sensitivity, and reduced tumor formation in nude mice, accompanied by downregulation of proliferative and EMT-related protein expression. However, these effects were counteracted in cells where GSDMC is overexpressed. Mechanistically, the oncogenic role of GSDMC is primarily achieved through the activation of the AKT/mTOR pathway, and this effect can be significantly reversed by rapamycin. Finally, SMAD4's interaction with the promoter region of GSDMC results in the suppression of GSDMC expression. In summary, our study through bioinformatics and experimental approaches not only proves that SMAD4 regulates the protumorigenic role of GSDMC through transcriptional targeting, but also indicates the possibility of developing the SMAD4/GSDMC/AKT/mTOR signaling axis as a potential biomarker and treatment target for LUSC.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.