结合转录组学和代谢组学评估小鼠在子宫内暴露于三种假定的甲状腺激素系统干扰物所导致的神经发育改变。

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY Toxicology Pub Date : 2024-08-11 DOI:10.1016/j.tox.2024.153905
{"title":"结合转录组学和代谢组学评估小鼠在子宫内暴露于三种假定的甲状腺激素系统干扰物所导致的神经发育改变。","authors":"","doi":"10.1016/j.tox.2024.153905","DOIUrl":null,"url":null,"abstract":"<div><p>Gestating mice were exposed to three chemicals, tetrabromo-bisphenol A (TBBPA; 2 mg/kg/day), amitrole (25 and 50 mg/kg/day) and pyraclostrobin (0.4 and 2 mg/kg/day) to assess their capacity to act as thyroid hormone disruptors and compromise neurodevelopment. Propyl-thio-uracyl, a known pharmacological inhibitor of thyroid gland secretion, was used at both high and low dose as a reference thyroid hormone system disruptor (1 ppm, 1500 ppm). A combination of plasma metabolomics and striatum transcriptomics revealed the induced change in pups at the postnatal stages. Although the underlying mechanism is unlikely to involve thyroid hormone disruption, these chemicals had a detectable effect on pups’ neurodevelopment.</p></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0300483X24001860/pdfft?md5=929158f9ee91bec6d65c6b5f50b83a0f&pid=1-s2.0-S0300483X24001860-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Combining transcriptomics and metabolomics to assess neurodevelopmental alteration caused by in utero exposure of mice to three putative thyroid hormone system disruptors\",\"authors\":\"\",\"doi\":\"10.1016/j.tox.2024.153905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gestating mice were exposed to three chemicals, tetrabromo-bisphenol A (TBBPA; 2 mg/kg/day), amitrole (25 and 50 mg/kg/day) and pyraclostrobin (0.4 and 2 mg/kg/day) to assess their capacity to act as thyroid hormone disruptors and compromise neurodevelopment. Propyl-thio-uracyl, a known pharmacological inhibitor of thyroid gland secretion, was used at both high and low dose as a reference thyroid hormone system disruptor (1 ppm, 1500 ppm). A combination of plasma metabolomics and striatum transcriptomics revealed the induced change in pups at the postnatal stages. Although the underlying mechanism is unlikely to involve thyroid hormone disruption, these chemicals had a detectable effect on pups’ neurodevelopment.</p></div>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0300483X24001860/pdfft?md5=929158f9ee91bec6d65c6b5f50b83a0f&pid=1-s2.0-S0300483X24001860-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300483X24001860\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X24001860","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

妊娠小鼠暴露于四溴双酚 A(TBBPA;2 毫克/千克/天)、双甲脒(25 和 50 毫克/千克/天)和吡唑醚菌酯(0.4 和 2 毫克/千克/天)这三种化学物质,以评估它们作为甲状腺激素干扰物和损害神经发育的能力。丙基硫脲是一种已知的甲状腺分泌药理抑制剂,以高剂量和低剂量作为甲状腺激素干扰物的参考(1 ppm、1500 ppm)。结合血浆代谢组学和纹状体转录组学发现了幼鼠在出生后阶段的诱导变化。虽然其根本机制不太可能涉及甲状腺激素干扰,但这些化学物质对幼崽的神经发育有可检测到的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining transcriptomics and metabolomics to assess neurodevelopmental alteration caused by in utero exposure of mice to three putative thyroid hormone system disruptors

Gestating mice were exposed to three chemicals, tetrabromo-bisphenol A (TBBPA; 2 mg/kg/day), amitrole (25 and 50 mg/kg/day) and pyraclostrobin (0.4 and 2 mg/kg/day) to assess their capacity to act as thyroid hormone disruptors and compromise neurodevelopment. Propyl-thio-uracyl, a known pharmacological inhibitor of thyroid gland secretion, was used at both high and low dose as a reference thyroid hormone system disruptor (1 ppm, 1500 ppm). A combination of plasma metabolomics and striatum transcriptomics revealed the induced change in pups at the postnatal stages. Although the underlying mechanism is unlikely to involve thyroid hormone disruption, these chemicals had a detectable effect on pups’ neurodevelopment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
期刊最新文献
Cadmium-induced lung injury disrupts immune cell homeostasis in the secondary lymphoid organs in mice Heavy metal contamination of the Nigerian environment from e-waste management: A systematic review of exposure pathway and attendant pathophysiological implications New insights into the toxicity of lanthanides with functional genomics Effects of 28-day nose-only inhalation of PCB52 (2,2′,5,5′-Tetrachlorobiphenyl) on the brain transcriptome Edible vegetables grown in the vicinity of electronic wastes: A study of potential health risks and DNA damage in consumers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1