小鼠骨骼肌内在功能和收缩刺激的葡萄糖摄取量不随时间而变化

IF 5.1 Q2 CELL BIOLOGY Function (Oxford, England) Pub Date : 2024-08-12 DOI:10.1093/function/zqae035
Liam S Fitzgerald, Shannon N Bremner, Samuel R Ward, Yoshitake Cho, Simon Schenk
{"title":"小鼠骨骼肌内在功能和收缩刺激的葡萄糖摄取量不随时间而变化","authors":"Liam S Fitzgerald, Shannon N Bremner, Samuel R Ward, Yoshitake Cho, Simon Schenk","doi":"10.1093/function/zqae035","DOIUrl":null,"url":null,"abstract":"<p><p>A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from mice at four times-of-day (zeitgeber times 1, 7, 13, 19). Significantly, though both muscles demonstrated circadian-related changes in gene expression, there were no differences between the four time points in intrinsic contractile function, endurance, and contraction-stimulated glucose uptake, regardless of sex. Overall, these results suggest that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intrinsic Skeletal Muscle Function and Contraction-stimulated Glucose Uptake Do Not Vary by Time-of-day in Mice.\",\"authors\":\"Liam S Fitzgerald, Shannon N Bremner, Samuel R Ward, Yoshitake Cho, Simon Schenk\",\"doi\":\"10.1093/function/zqae035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from mice at four times-of-day (zeitgeber times 1, 7, 13, 19). Significantly, though both muscles demonstrated circadian-related changes in gene expression, there were no differences between the four time points in intrinsic contractile function, endurance, and contraction-stimulated glucose uptake, regardless of sex. Overall, these results suggest that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake.</p>\",\"PeriodicalId\":73119,\"journal\":{\"name\":\"Function (Oxford, England)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Function (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/function/zqae035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqae035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的数据表明,骨骼肌的收缩功能和葡萄糖代谢随时间的变化而变化,而时间生物学对骨骼肌内在特性的影响被认为是潜在的媒介。然而,还没有研究直接调查骨骼肌在 24 小时昼夜周期内的内在收缩功能或葡萄糖代谢。为了解决这个问题,我们评估了小鼠离体伸肌和比目鱼肌在一天中四个时间段(昼夜节律时间 1、7、13、19)的内在收缩功能和耐力,以及收缩刺激的葡萄糖摄取。值得注意的是,虽然两块肌肉的基因表达都表现出与昼夜节律相关的变化,但在内在收缩功能、耐力和收缩刺激的葡萄糖摄取量方面,四个时间点之间没有差异,与性别无关。总之,这些结果表明,运动表现的日时变化和运动的降糖益处并不是由于时间生物学对肌肉内在功能或收缩刺激葡萄糖摄取的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intrinsic Skeletal Muscle Function and Contraction-stimulated Glucose Uptake Do Not Vary by Time-of-day in Mice.

A growing body of data suggests that skeletal muscle contractile function and glucose metabolism vary by time-of-day, with chronobiological effects on intrinsic skeletal muscle properties being proposed as the underlying mediator. However, no studies have directly investigated intrinsic contractile function or glucose metabolism in skeletal muscle over a 24 h circadian cycle. To address this, we assessed intrinsic contractile function and endurance, as well as contraction-stimulated glucose uptake, in isolated extensor digitorum longus and soleus from mice at four times-of-day (zeitgeber times 1, 7, 13, 19). Significantly, though both muscles demonstrated circadian-related changes in gene expression, there were no differences between the four time points in intrinsic contractile function, endurance, and contraction-stimulated glucose uptake, regardless of sex. Overall, these results suggest that time-of-day variation in exercise performance and the glycemia-reducing benefits of exercise are not due to chronobiological effects on intrinsic muscle function or contraction-stimulated glucose uptake.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
Exploring Circadian Changes in Muscle Physiology: Methodological Considerations. Malaria and Hypertension: What Is the Direction of Association? Impaired neurocirculatory control in chronic kidney disease: New evidence for blunted sympathetic baroreflex and reduced sympathetic transduction. Intrinsic Skeletal Muscle Function and Contraction-stimulated Glucose Uptake Do Not Vary by Time-of-day in Mice. Managing SABV in Physiological Research: Best Practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1