使用 PCA-Kmeans 和集合分类器对风力涡轮机进行异常检测分类

IF 3.3 Q3 ENERGY & FUELS IEEE Open Access Journal of Power and Energy Pub Date : 2024-08-02 DOI:10.1109/OAJPE.2024.3437414
Prince Waqas Khan;Yung-Cheol Byun
{"title":"使用 PCA-Kmeans 和集合分类器对风力涡轮机进行异常检测分类","authors":"Prince Waqas Khan;Yung-Cheol Byun","doi":"10.1109/OAJPE.2024.3437414","DOIUrl":null,"url":null,"abstract":"Monitoring wind turbine performance is vital for ensuring wind turbines’ safe, efficient, and cost-effective operation over time. Using principal component analysis (PCA), k-means clustering for labeling, and an ensemble classifier for finding outliers, this study suggests a new way to find anomalies in wind turbines. The primary objective is to improve the precision of anomaly detection in wind turbines by leveraging machine-learning techniques. The proposed methodology utilizes the output of the PCA-Kmeans model to label supervisory control and data acquisition (SCADA) data. Furthermore, a stacking ensemble classifier is employed to refine the model’s precision. Our proposed model achieved a classification accuracy of 99%, which is a significant improvement compared to existing approaches. The significance of this study lies in its potential to enable more efficient wind turbine operation by identifying and resolving anomalies that may reduce their performance. This can ultimately contribute to achieving a sustainable and renewable energy future.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10621021","citationCount":"0","resultStr":"{\"title\":\"Detecting Anomaly Classification Using PCA-Kmeans and Ensembled Classifier for Wind Turbines\",\"authors\":\"Prince Waqas Khan;Yung-Cheol Byun\",\"doi\":\"10.1109/OAJPE.2024.3437414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring wind turbine performance is vital for ensuring wind turbines’ safe, efficient, and cost-effective operation over time. Using principal component analysis (PCA), k-means clustering for labeling, and an ensemble classifier for finding outliers, this study suggests a new way to find anomalies in wind turbines. The primary objective is to improve the precision of anomaly detection in wind turbines by leveraging machine-learning techniques. The proposed methodology utilizes the output of the PCA-Kmeans model to label supervisory control and data acquisition (SCADA) data. Furthermore, a stacking ensemble classifier is employed to refine the model’s precision. Our proposed model achieved a classification accuracy of 99%, which is a significant improvement compared to existing approaches. The significance of this study lies in its potential to enable more efficient wind turbine operation by identifying and resolving anomalies that may reduce their performance. This can ultimately contribute to achieving a sustainable and renewable energy future.\",\"PeriodicalId\":56187,\"journal\":{\"name\":\"IEEE Open Access Journal of Power and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10621021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Access Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10621021/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10621021/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

监测风力涡轮机的性能对于确保风力涡轮机长期安全、高效、经济地运行至关重要。本研究利用主成分分析 (PCA)、k-means 聚类进行标记,并利用集合分类器查找异常值,提出了一种发现风力涡轮机异常的新方法。主要目标是利用机器学习技术提高风力涡轮机异常检测的精度。所提出的方法利用 PCA-Kmeans 模型的输出来标记监控和数据采集 (SCADA) 数据。此外,还采用了堆叠集合分类器来提高模型的精度。我们提出的模型达到了 99% 的分类准确率,与现有方法相比有了显著提高。这项研究的意义在于,它可以通过识别和解决可能降低风机性能的异常现象,提高风机运行效率。这最终将有助于实现可持续和可再生能源的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Anomaly Classification Using PCA-Kmeans and Ensembled Classifier for Wind Turbines
Monitoring wind turbine performance is vital for ensuring wind turbines’ safe, efficient, and cost-effective operation over time. Using principal component analysis (PCA), k-means clustering for labeling, and an ensemble classifier for finding outliers, this study suggests a new way to find anomalies in wind turbines. The primary objective is to improve the precision of anomaly detection in wind turbines by leveraging machine-learning techniques. The proposed methodology utilizes the output of the PCA-Kmeans model to label supervisory control and data acquisition (SCADA) data. Furthermore, a stacking ensemble classifier is employed to refine the model’s precision. Our proposed model achieved a classification accuracy of 99%, which is a significant improvement compared to existing approaches. The significance of this study lies in its potential to enable more efficient wind turbine operation by identifying and resolving anomalies that may reduce their performance. This can ultimately contribute to achieving a sustainable and renewable energy future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
期刊最新文献
A Novel Dual-Rotor Homopolar AC Machine Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-Learning Data Driven Real-Time Dynamic Voltage Control Using Decentralized Execution Multi-Agent Deep Reinforcement Learning Global Research Priorities for Holistic Integration of Water and Power Systems Floating Neutral Detection Using Actual Generation of Form 2S Meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1