{"title":"强晶体非谐波性和高带退变性诱导的 Fe2NbAl 合金的优异热电性能","authors":"Xianfeng Ye, Jian Yu, Shaoqiu Ke, Dong Liang, Tiantian Chen, Chengshan Liu, Wenjie Xu, Longzhou Li, Wanting Zhu, Xiaolei Nie, Ping Wei, Wenyu Zhao, Qingjie Zhang","doi":"10.1038/s41535-024-00671-1","DOIUrl":null,"url":null,"abstract":"<p>Full-Heusler alloys with earth-abundant elements exhibit high mechanical strength and favorable electrical transport behavior, but their high intrinsic lattice thermal conductivity limits potential thermoelectric application. Here, the thermoelectric transport properties of Fe-based Full-Heusler Fe<sub>2</sub>MAl (M = V, Nb, Ta) alloys are comprehensively investigated utilizing density functional theory. The results suggest that Fe<sub>2</sub>NbAl exhibits exceptionally low lattice thermal conductivity due to low phonon velocities and weakly bound Nb atoms. In Fe<sub>2</sub>NbAl, the underbonding of the Nb atoms leads large Grüneisen parameters and high anharmonic scattering rates of low-frequency acoustic phonon. Meanwhile, the high band degeneracy and large electrical conductivity lead to a maximum <i>p</i>-type power factor of 255.6 μW·K<sup>−2</sup>·cm<sup>−1</sup> at 900 K. The combination of low lattice thermal conductivity and favorable electrical transport properties leads a maximum <i>p</i>-type dimensionless figure of merit of 1.7. Our work indicates Fe<sub>2</sub>NbAl, as a low-cost, environmentally friendly, is a potential high-performance <i>p</i>-type thermoelectric material.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"92 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excellent thermoelectric performance of Fe2NbAl alloy induced by strong crystal anharmonicity and high band degeneracy\",\"authors\":\"Xianfeng Ye, Jian Yu, Shaoqiu Ke, Dong Liang, Tiantian Chen, Chengshan Liu, Wenjie Xu, Longzhou Li, Wanting Zhu, Xiaolei Nie, Ping Wei, Wenyu Zhao, Qingjie Zhang\",\"doi\":\"10.1038/s41535-024-00671-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Full-Heusler alloys with earth-abundant elements exhibit high mechanical strength and favorable electrical transport behavior, but their high intrinsic lattice thermal conductivity limits potential thermoelectric application. Here, the thermoelectric transport properties of Fe-based Full-Heusler Fe<sub>2</sub>MAl (M = V, Nb, Ta) alloys are comprehensively investigated utilizing density functional theory. The results suggest that Fe<sub>2</sub>NbAl exhibits exceptionally low lattice thermal conductivity due to low phonon velocities and weakly bound Nb atoms. In Fe<sub>2</sub>NbAl, the underbonding of the Nb atoms leads large Grüneisen parameters and high anharmonic scattering rates of low-frequency acoustic phonon. Meanwhile, the high band degeneracy and large electrical conductivity lead to a maximum <i>p</i>-type power factor of 255.6 μW·K<sup>−2</sup>·cm<sup>−1</sup> at 900 K. The combination of low lattice thermal conductivity and favorable electrical transport properties leads a maximum <i>p</i>-type dimensionless figure of merit of 1.7. Our work indicates Fe<sub>2</sub>NbAl, as a low-cost, environmentally friendly, is a potential high-performance <i>p</i>-type thermoelectric material.</p>\",\"PeriodicalId\":19283,\"journal\":{\"name\":\"npj Quantum Materials\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41535-024-00671-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00671-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
富含地球元素的全赫斯勒合金具有很高的机械强度和良好的电输运行为,但其固有的高晶格热导率限制了其潜在的热电应用。本文利用密度泛函理论全面研究了铁基全休斯勒 Fe2MAl(M = V、Nb、Ta)合金的热电传输特性。结果表明,由于声子速度低和 Nb 原子结合力弱,Fe2NbAl 的晶格热导率特别低。在 Fe2NbAl 中,铌原子的弱结合导致 Grüneisen 参数较大,低频声子的非谐波散射率较高。同时,高带变性和大电导率导致 900 K 时的最大 p 型功率因数达到 255.6 μW-K-2-cm-1。我们的研究成果表明,Fe2NbAl 是一种低成本、环保型的潜在高性能 p 型热电材料。
Excellent thermoelectric performance of Fe2NbAl alloy induced by strong crystal anharmonicity and high band degeneracy
Full-Heusler alloys with earth-abundant elements exhibit high mechanical strength and favorable electrical transport behavior, but their high intrinsic lattice thermal conductivity limits potential thermoelectric application. Here, the thermoelectric transport properties of Fe-based Full-Heusler Fe2MAl (M = V, Nb, Ta) alloys are comprehensively investigated utilizing density functional theory. The results suggest that Fe2NbAl exhibits exceptionally low lattice thermal conductivity due to low phonon velocities and weakly bound Nb atoms. In Fe2NbAl, the underbonding of the Nb atoms leads large Grüneisen parameters and high anharmonic scattering rates of low-frequency acoustic phonon. Meanwhile, the high band degeneracy and large electrical conductivity lead to a maximum p-type power factor of 255.6 μW·K−2·cm−1 at 900 K. The combination of low lattice thermal conductivity and favorable electrical transport properties leads a maximum p-type dimensionless figure of merit of 1.7. Our work indicates Fe2NbAl, as a low-cost, environmentally friendly, is a potential high-performance p-type thermoelectric material.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.