{"title":"利用改进学习的单网络自适应批判器实现未知非线性奇异扰动系统的在线优化跟踪控制","authors":"Zhijun Fu, Bao Ma, Dengfeng Zhao, Yuming Yin","doi":"10.1007/s40747-024-01598-7","DOIUrl":null,"url":null,"abstract":"<p>This study is the first time devoted to seek an online optimal tracking solution for unknown nonlinear singularly perturbed systems based on single network adaptive critic (SNAC) design. Firstly, a novel identifier with more efficient parametric multi-time scales differential neural network (PMTSDNN) is developed to obtain the unknown system dynamics. Then, based on the identification results, the online optimal tracking controller consists of an adaptive steady control term and an optimal feedback control term is developed by using SNAC to solve the Hamilton–Jacobi–Bellman (HJB) equation online. New learning law considering filtered parameter identification error is developed for the PMTSDNN identifier and the SNAC, which can realize online synchronous learning and fast convergence. The Lyapunov approach is synthesized to ensure the convergence characteristics of the overall closed loop system consisting of the PMTSDNN identifier, the SNAC and the optimal tracking control policy. Three examples are provided to illustrate the effectiveness of the investigated method.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"7 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online optimal tracking control of unknown nonlinear singularly perturbed systems using single network adaptive critic with improved learning\",\"authors\":\"Zhijun Fu, Bao Ma, Dengfeng Zhao, Yuming Yin\",\"doi\":\"10.1007/s40747-024-01598-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study is the first time devoted to seek an online optimal tracking solution for unknown nonlinear singularly perturbed systems based on single network adaptive critic (SNAC) design. Firstly, a novel identifier with more efficient parametric multi-time scales differential neural network (PMTSDNN) is developed to obtain the unknown system dynamics. Then, based on the identification results, the online optimal tracking controller consists of an adaptive steady control term and an optimal feedback control term is developed by using SNAC to solve the Hamilton–Jacobi–Bellman (HJB) equation online. New learning law considering filtered parameter identification error is developed for the PMTSDNN identifier and the SNAC, which can realize online synchronous learning and fast convergence. The Lyapunov approach is synthesized to ensure the convergence characteristics of the overall closed loop system consisting of the PMTSDNN identifier, the SNAC and the optimal tracking control policy. Three examples are provided to illustrate the effectiveness of the investigated method.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01598-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01598-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Online optimal tracking control of unknown nonlinear singularly perturbed systems using single network adaptive critic with improved learning
This study is the first time devoted to seek an online optimal tracking solution for unknown nonlinear singularly perturbed systems based on single network adaptive critic (SNAC) design. Firstly, a novel identifier with more efficient parametric multi-time scales differential neural network (PMTSDNN) is developed to obtain the unknown system dynamics. Then, based on the identification results, the online optimal tracking controller consists of an adaptive steady control term and an optimal feedback control term is developed by using SNAC to solve the Hamilton–Jacobi–Bellman (HJB) equation online. New learning law considering filtered parameter identification error is developed for the PMTSDNN identifier and the SNAC, which can realize online synchronous learning and fast convergence. The Lyapunov approach is synthesized to ensure the convergence characteristics of the overall closed loop system consisting of the PMTSDNN identifier, the SNAC and the optimal tracking control policy. Three examples are provided to illustrate the effectiveness of the investigated method.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.