通过锂扩散调节抑制全固态锂金属电池中的锂空隙

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-10-16 DOI:10.1016/j.joule.2024.07.007
Zi-Xuan Wang , Yang Lu , Chen-Zi Zhao , Wen-Ze Huang , Xue-Yan Huang , Wei-Jin Kong , Ling-Xuan Li , Zi-You Wang , Hong Yuan , Jia-Qi Huang , Qiang Zhang
{"title":"通过锂扩散调节抑制全固态锂金属电池中的锂空隙","authors":"Zi-Xuan Wang ,&nbsp;Yang Lu ,&nbsp;Chen-Zi Zhao ,&nbsp;Wen-Ze Huang ,&nbsp;Xue-Yan Huang ,&nbsp;Wei-Jin Kong ,&nbsp;Ling-Xuan Li ,&nbsp;Zi-You Wang ,&nbsp;Hong Yuan ,&nbsp;Jia-Qi Huang ,&nbsp;Qiang Zhang","doi":"10.1016/j.joule.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><div>The application of all-solid-state lithium metal batteries (ASSLMBs) is hampered by the dynamic deterioration of solid-solid contacts. Anodic degradation is primarily attributed to the accumulation of lithium (Li) voids due to the limited Li diffusion abilities of the anodes. Here, a ternary composite Li anode is introduced by comprising carbon materials embedded within the Li-magnesium substrate. This design effectively suppresses the Li void-induced dynamic deterioration of interfacial contact during continuous cycling. The enhanced Li diffusion pathway with accelerated diffusion rate in bulk anode aids in maintaining contact post-Li stripping, therefore mitigating interface damage caused by Li void formation. The ternary composite anode affords an areal capacity of 14.2 mAh cm<sup>−2</sup> with Li utilization rate of 85%. Cooperated with LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> (NCM622) cathodes, the full cells exhibit long-term stability of &gt;300 cycles under room temperature. These findings provide an effective strategy to construct conformal interfaces for high-capacity and long-life ASSLMBs.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 10","pages":"Pages 2794-2810"},"PeriodicalIF":38.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppressing Li voids in all-solid-state lithium metal batteries through Li diffusion regulation\",\"authors\":\"Zi-Xuan Wang ,&nbsp;Yang Lu ,&nbsp;Chen-Zi Zhao ,&nbsp;Wen-Ze Huang ,&nbsp;Xue-Yan Huang ,&nbsp;Wei-Jin Kong ,&nbsp;Ling-Xuan Li ,&nbsp;Zi-You Wang ,&nbsp;Hong Yuan ,&nbsp;Jia-Qi Huang ,&nbsp;Qiang Zhang\",\"doi\":\"10.1016/j.joule.2024.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The application of all-solid-state lithium metal batteries (ASSLMBs) is hampered by the dynamic deterioration of solid-solid contacts. Anodic degradation is primarily attributed to the accumulation of lithium (Li) voids due to the limited Li diffusion abilities of the anodes. Here, a ternary composite Li anode is introduced by comprising carbon materials embedded within the Li-magnesium substrate. This design effectively suppresses the Li void-induced dynamic deterioration of interfacial contact during continuous cycling. The enhanced Li diffusion pathway with accelerated diffusion rate in bulk anode aids in maintaining contact post-Li stripping, therefore mitigating interface damage caused by Li void formation. The ternary composite anode affords an areal capacity of 14.2 mAh cm<sup>−2</sup> with Li utilization rate of 85%. Cooperated with LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> (NCM622) cathodes, the full cells exhibit long-term stability of &gt;300 cycles under room temperature. These findings provide an effective strategy to construct conformal interfaces for high-capacity and long-life ASSLMBs.</div></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"8 10\",\"pages\":\"Pages 2794-2810\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124003362\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124003362","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

全固态锂金属电池(ASSLMB)的应用受到固-固接触动态劣化的阻碍。阳极降解的主要原因是阳极的锂扩散能力有限,导致锂(Li)空隙积累。在这里,通过在锂镁基底中嵌入碳材料,引入了一种三元复合锂阳极。这种设计有效地抑制了锂空隙在连续循环过程中引起的界面接触动态恶化。在块状阳极中,锂的扩散途径增强,扩散速度加快,有助于在锂剥离后保持接触,从而减轻锂空隙形成造成的界面损坏。三元复合阳极的面积容量为 14.2 mAh cm-2,锂利用率为 85%。与 LiNi0.6Co0.2Mn0.2O2 (NCM622) 阴极配合使用,全电池在室温下可实现 300 次循环的长期稳定性。这些发现为构建高容量、长寿命 ASSLMB 的共形界面提供了有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Suppressing Li voids in all-solid-state lithium metal batteries through Li diffusion regulation
The application of all-solid-state lithium metal batteries (ASSLMBs) is hampered by the dynamic deterioration of solid-solid contacts. Anodic degradation is primarily attributed to the accumulation of lithium (Li) voids due to the limited Li diffusion abilities of the anodes. Here, a ternary composite Li anode is introduced by comprising carbon materials embedded within the Li-magnesium substrate. This design effectively suppresses the Li void-induced dynamic deterioration of interfacial contact during continuous cycling. The enhanced Li diffusion pathway with accelerated diffusion rate in bulk anode aids in maintaining contact post-Li stripping, therefore mitigating interface damage caused by Li void formation. The ternary composite anode affords an areal capacity of 14.2 mAh cm−2 with Li utilization rate of 85%. Cooperated with LiNi0.6Co0.2Mn0.2O2 (NCM622) cathodes, the full cells exhibit long-term stability of >300 cycles under room temperature. These findings provide an effective strategy to construct conformal interfaces for high-capacity and long-life ASSLMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Spin regulation through chirality in catalysis Battery health management in the era of big field data Anthracene-based energy storage Technoeconomic analysis of perovskite/silicon tandem solar modules De-doping engineering for efficient and heat-stable perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1