细胞外囊泡在免疫反应和免疫中的生物学作用和功能

IF 25.5 1区 医学 Q1 IMMUNOLOGY Immunity Pub Date : 2024-08-13 DOI:10.1016/j.immuni.2024.07.009
{"title":"细胞外囊泡在免疫反应和免疫中的生物学作用和功能","authors":"","doi":"10.1016/j.immuni.2024.07.009","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs), such as ectosomes and exosomes, contain DNA, RNA, proteins and are encased in a phospholipid bilayer. EVs provide intralumenal cargo for delivery into the cytoplasm of recipient cells with an impact on the function of immune cells, in part because their biogenesis can also intersect with antigen processing and presentation. Motile EVs from activated immune cells may increase the frequency of immune synapses on recipient cells in a proximity-independent manner for local and long-distance modulation of systemic immunity in inflammation, autoimmunity, organ fibrosis, cancer, and infections. Natural and engineered EVs exhibit the ability to impact innate and adaptive immunity and are entering clinical trials. EVs are likely a component of an optimally functioning immune system, with the potential to serve as immunotherapeutics. Considering the evolving evidence, it is possible that EVs could be the original primordial organic units that preceded the creation of the first cell.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"18 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The biology and function of extracellular vesicles in immune response and immunity\",\"authors\":\"\",\"doi\":\"10.1016/j.immuni.2024.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extracellular vesicles (EVs), such as ectosomes and exosomes, contain DNA, RNA, proteins and are encased in a phospholipid bilayer. EVs provide intralumenal cargo for delivery into the cytoplasm of recipient cells with an impact on the function of immune cells, in part because their biogenesis can also intersect with antigen processing and presentation. Motile EVs from activated immune cells may increase the frequency of immune synapses on recipient cells in a proximity-independent manner for local and long-distance modulation of systemic immunity in inflammation, autoimmunity, organ fibrosis, cancer, and infections. Natural and engineered EVs exhibit the ability to impact innate and adaptive immunity and are entering clinical trials. EVs are likely a component of an optimally functioning immune system, with the potential to serve as immunotherapeutics. Considering the evolving evidence, it is possible that EVs could be the original primordial organic units that preceded the creation of the first cell.</p>\",\"PeriodicalId\":13269,\"journal\":{\"name\":\"Immunity\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":25.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.immuni.2024.07.009\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.07.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞外囊泡(EVs),如外泌体和外泌体,含有 DNA、RNA 和蛋白质,并包裹在磷脂双分子层中。EVs提供腔内货物,可输送到受体细胞的细胞质中,对免疫细胞的功能产生影响,部分原因是EVs的生物生成也可能与抗原处理和递呈产生交集。来自活化免疫细胞的运动性EVs可能会增加受体细胞上免疫突触的频率,从而在炎症、自身免疫、器官纤维化、癌症和感染中对全身免疫进行局部和远距离调节。天然和人工合成的 EVs 具有影响先天和适应性免疫的能力,目前正进入临床试验阶段。EVs 很可能是免疫系统最佳功能的组成部分,具有作为免疫疗法的潜力。考虑到不断发展的证据,EVs 有可能是第一个细胞诞生之前的原始有机单位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The biology and function of extracellular vesicles in immune response and immunity

Extracellular vesicles (EVs), such as ectosomes and exosomes, contain DNA, RNA, proteins and are encased in a phospholipid bilayer. EVs provide intralumenal cargo for delivery into the cytoplasm of recipient cells with an impact on the function of immune cells, in part because their biogenesis can also intersect with antigen processing and presentation. Motile EVs from activated immune cells may increase the frequency of immune synapses on recipient cells in a proximity-independent manner for local and long-distance modulation of systemic immunity in inflammation, autoimmunity, organ fibrosis, cancer, and infections. Natural and engineered EVs exhibit the ability to impact innate and adaptive immunity and are entering clinical trials. EVs are likely a component of an optimally functioning immune system, with the potential to serve as immunotherapeutics. Considering the evolving evidence, it is possible that EVs could be the original primordial organic units that preceded the creation of the first cell.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunity
Immunity 医学-免疫学
CiteScore
49.40
自引率
2.20%
发文量
205
审稿时长
6 months
期刊介绍: Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.
期刊最新文献
Cancer cells restrict immunogenicity of retrotransposon expression via distinct mechanisms A pan-family screen of nuclear receptors in immunocytes reveals ligand-dependent inflammasome control Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation Targeting the aminopeptidase ERAP enhances antitumor immunity by disrupting the NKG2A-HLA-E inhibitory checkpoint CAR T cells in autoimmune disease: On the road to remission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1