Jonathan T Butement, Xiang Wang, Fabrizio Siracusa, Emily Miller, Katsiaryna Pabortsava, Matthew Mowlem, Daniel Spencer, Hywel Morgan
{"title":"利用阻抗细胞测量法区分微塑料和浮游植物","authors":"Jonathan T Butement, Xiang Wang, Fabrizio Siracusa, Emily Miller, Katsiaryna Pabortsava, Matthew Mowlem, Daniel Spencer, Hywel Morgan","doi":"10.1021/acssensors.4c01353","DOIUrl":null,"url":null,"abstract":"<p><p>Both microplastics and phytoplankton are found together in the ocean as suspended microparticles. There is a need for deployable technologies that can identify, size, and count these particles at high throughput to monitor plankton community structure and microplastic pollution levels. In situ analysis is particularly desirable as it avoids the problems associated with sample storage, processing, and degradation. Current technologies for phytoplankton and microplastic analysis are limited in their capability by specificity, throughput, or lack of deployability. Little attention has been paid to the smallest size fraction of microplastics and phytoplankton below 10 μm in diameter, which are in high abundance. Impedance cytometry is a technique that uses microfluidic chips with integrated microelectrodes to measure the electrical impedance of individual particles. Here, we present an impedance cytometer that can discriminate and count microplastics sampled directly from a mixture of phytoplankton in a seawater-like medium in the 1.5-10 μm size range. A simple machine learning algorithm was used to classify microplastic particles based on dual-frequency impedance measurements of particle size (at 1 MHz) and cell internal electrical composition (at 500 MHz). The technique shows promise for marine deployment, as the chip is sensitive, rugged, and mass producible.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":" ","pages":"5206-5213"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519907/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discrimination of Microplastics and Phytoplankton Using Impedance Cytometry.\",\"authors\":\"Jonathan T Butement, Xiang Wang, Fabrizio Siracusa, Emily Miller, Katsiaryna Pabortsava, Matthew Mowlem, Daniel Spencer, Hywel Morgan\",\"doi\":\"10.1021/acssensors.4c01353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Both microplastics and phytoplankton are found together in the ocean as suspended microparticles. There is a need for deployable technologies that can identify, size, and count these particles at high throughput to monitor plankton community structure and microplastic pollution levels. In situ analysis is particularly desirable as it avoids the problems associated with sample storage, processing, and degradation. Current technologies for phytoplankton and microplastic analysis are limited in their capability by specificity, throughput, or lack of deployability. Little attention has been paid to the smallest size fraction of microplastics and phytoplankton below 10 μm in diameter, which are in high abundance. Impedance cytometry is a technique that uses microfluidic chips with integrated microelectrodes to measure the electrical impedance of individual particles. Here, we present an impedance cytometer that can discriminate and count microplastics sampled directly from a mixture of phytoplankton in a seawater-like medium in the 1.5-10 μm size range. A simple machine learning algorithm was used to classify microplastic particles based on dual-frequency impedance measurements of particle size (at 1 MHz) and cell internal electrical composition (at 500 MHz). The technique shows promise for marine deployment, as the chip is sensitive, rugged, and mass producible.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\" \",\"pages\":\"5206-5213\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519907/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.4c01353\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c01353","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Discrimination of Microplastics and Phytoplankton Using Impedance Cytometry.
Both microplastics and phytoplankton are found together in the ocean as suspended microparticles. There is a need for deployable technologies that can identify, size, and count these particles at high throughput to monitor plankton community structure and microplastic pollution levels. In situ analysis is particularly desirable as it avoids the problems associated with sample storage, processing, and degradation. Current technologies for phytoplankton and microplastic analysis are limited in their capability by specificity, throughput, or lack of deployability. Little attention has been paid to the smallest size fraction of microplastics and phytoplankton below 10 μm in diameter, which are in high abundance. Impedance cytometry is a technique that uses microfluidic chips with integrated microelectrodes to measure the electrical impedance of individual particles. Here, we present an impedance cytometer that can discriminate and count microplastics sampled directly from a mixture of phytoplankton in a seawater-like medium in the 1.5-10 μm size range. A simple machine learning algorithm was used to classify microplastic particles based on dual-frequency impedance measurements of particle size (at 1 MHz) and cell internal electrical composition (at 500 MHz). The technique shows promise for marine deployment, as the chip is sensitive, rugged, and mass producible.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.