Raj Kumar, Prof. Dr. Eefjan Breukink, Dr. Markus Weingarth
{"title":"LTA前体分子Glc2-DAG的分离和分子特征,抗生素的潜在靶标。","authors":"Raj Kumar, Prof. Dr. Eefjan Breukink, Dr. Markus Weingarth","doi":"10.1002/cbic.202400543","DOIUrl":null,"url":null,"abstract":"<p>Bacterial infections present a major global health threat, often displaying resistance to various antibiotics. Lipoteichoic acid (LTA) is a vital component of bacterial cell envelopes of Gram-positive bacteria, crucial for cell integrity, cell division, and host inflammation. Due to its essential role for bacteria, LTA and its biosynthesis are also attractive drug targets, however, there is only scant molecular knowledge on LTA and its precursor molecules in membranes. Here, we report the isolation and molecular characterization of diglucosyldiacylglycerol (Glc<sub>2</sub>-DAG), the glycolipid precursor molecule that anchors LTA in the bacterial plasma-membrane. Using a tailored growth medium and purification protocols, we isolated <sup>13</sup>C-isotope labelled Glc<sub>2</sub>-DAG from bacteria, which can then be used for high-resolution NMR studies. Using solution-state and solid-state NMR, we show an in-depth molecular characterization of Glc<sub>2</sub>-DAG, including in native-like membranes. Our approach may help to identify antibiotics that directly target LTA precursor molecules, and it offers a tool for future investigations into the role of Glc<sub>2</sub>-DAG in bacterial physiology.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":"25 21","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202400543","citationCount":"0","resultStr":"{\"title\":\"Isolation and Molecular Characterization of the LTA Precursor Molecule Glc2-DAG, a Potential Target for Antibiotics\",\"authors\":\"Raj Kumar, Prof. Dr. Eefjan Breukink, Dr. Markus Weingarth\",\"doi\":\"10.1002/cbic.202400543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bacterial infections present a major global health threat, often displaying resistance to various antibiotics. Lipoteichoic acid (LTA) is a vital component of bacterial cell envelopes of Gram-positive bacteria, crucial for cell integrity, cell division, and host inflammation. Due to its essential role for bacteria, LTA and its biosynthesis are also attractive drug targets, however, there is only scant molecular knowledge on LTA and its precursor molecules in membranes. Here, we report the isolation and molecular characterization of diglucosyldiacylglycerol (Glc<sub>2</sub>-DAG), the glycolipid precursor molecule that anchors LTA in the bacterial plasma-membrane. Using a tailored growth medium and purification protocols, we isolated <sup>13</sup>C-isotope labelled Glc<sub>2</sub>-DAG from bacteria, which can then be used for high-resolution NMR studies. Using solution-state and solid-state NMR, we show an in-depth molecular characterization of Glc<sub>2</sub>-DAG, including in native-like membranes. Our approach may help to identify antibiotics that directly target LTA precursor molecules, and it offers a tool for future investigations into the role of Glc<sub>2</sub>-DAG in bacterial physiology.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\"25 21\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202400543\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202400543\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202400543","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Isolation and Molecular Characterization of the LTA Precursor Molecule Glc2-DAG, a Potential Target for Antibiotics
Bacterial infections present a major global health threat, often displaying resistance to various antibiotics. Lipoteichoic acid (LTA) is a vital component of bacterial cell envelopes of Gram-positive bacteria, crucial for cell integrity, cell division, and host inflammation. Due to its essential role for bacteria, LTA and its biosynthesis are also attractive drug targets, however, there is only scant molecular knowledge on LTA and its precursor molecules in membranes. Here, we report the isolation and molecular characterization of diglucosyldiacylglycerol (Glc2-DAG), the glycolipid precursor molecule that anchors LTA in the bacterial plasma-membrane. Using a tailored growth medium and purification protocols, we isolated 13C-isotope labelled Glc2-DAG from bacteria, which can then be used for high-resolution NMR studies. Using solution-state and solid-state NMR, we show an in-depth molecular characterization of Glc2-DAG, including in native-like membranes. Our approach may help to identify antibiotics that directly target LTA precursor molecules, and it offers a tool for future investigations into the role of Glc2-DAG in bacterial physiology.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).