{"title":"补锌可通过降低肽基精氨酸脱氨酶 4 的表达减少中性粒细胞胞外陷阱的形成","authors":"Jianan Cheng, Lothar Rink, Inga Wessels","doi":"10.1002/mnfr.202400013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Scope</h3>\n \n <p>Neutrophils play a decisive role during the immediate defense against infections. However, as observed during rheumatoid arthritis, activated neutrophils can also cause tissue damage. Previous studies indicate that zinc supplementation may alter certain neutrophil functions. However, precise underlying mechanisms and possible effects of zinc deficiency remain incompletely understood. The objective of this study is to investigate the effects of changes in zinc status on formation of neutrophil extracellular traps (NETs) and other fundamental neutrophil functions.</p>\n </section>\n \n <section>\n \n <h3> Methods and results</h3>\n \n <p>Interleukin (IL)-17 and tumor necrosis factor (TNF)-α are used to simulate the inflammatory environment observed in autoimmune diseases. The study analyzes the impact of the zinc status on NETs release, using a fluorescence plate reader, and on the expression of peptidylarginine deiminase 4 (PAD4), S100A8/A9, and certain cytokines by PCR and western blot. These results show that zinc supplementation significantly reduces NETs formation and downregulates PAD4 protein expression. Zinc supplementation results in increased protein expression of interleukin-1 receptor antagonist (IL-1RA) and IL-8 in stimulated cells.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The results suggest that changes in extracellular zinc availability may influence the functions of neutrophils. Therefore, maintaining an appropriate zinc level is advisable for preserving innate immunity and to prevent hyper-activation of neutrophils.</p>\n </section>\n </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 17","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400013","citationCount":"0","resultStr":"{\"title\":\"Zinc Supplementation Reduces the Formation of Neutrophil Extracellular Traps by Decreasing the Expression of Peptidyl Arginine Deiminase 4\",\"authors\":\"Jianan Cheng, Lothar Rink, Inga Wessels\",\"doi\":\"10.1002/mnfr.202400013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <section>\\n \\n <h3> Scope</h3>\\n \\n <p>Neutrophils play a decisive role during the immediate defense against infections. However, as observed during rheumatoid arthritis, activated neutrophils can also cause tissue damage. Previous studies indicate that zinc supplementation may alter certain neutrophil functions. However, precise underlying mechanisms and possible effects of zinc deficiency remain incompletely understood. The objective of this study is to investigate the effects of changes in zinc status on formation of neutrophil extracellular traps (NETs) and other fundamental neutrophil functions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and results</h3>\\n \\n <p>Interleukin (IL)-17 and tumor necrosis factor (TNF)-α are used to simulate the inflammatory environment observed in autoimmune diseases. The study analyzes the impact of the zinc status on NETs release, using a fluorescence plate reader, and on the expression of peptidylarginine deiminase 4 (PAD4), S100A8/A9, and certain cytokines by PCR and western blot. These results show that zinc supplementation significantly reduces NETs formation and downregulates PAD4 protein expression. Zinc supplementation results in increased protein expression of interleukin-1 receptor antagonist (IL-1RA) and IL-8 in stimulated cells.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>The results suggest that changes in extracellular zinc availability may influence the functions of neutrophils. Therefore, maintaining an appropriate zinc level is advisable for preserving innate immunity and to prevent hyper-activation of neutrophils.</p>\\n </section>\\n </div>\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\"68 17\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mnfr.202400013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400013\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400013","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Zinc Supplementation Reduces the Formation of Neutrophil Extracellular Traps by Decreasing the Expression of Peptidyl Arginine Deiminase 4
Scope
Neutrophils play a decisive role during the immediate defense against infections. However, as observed during rheumatoid arthritis, activated neutrophils can also cause tissue damage. Previous studies indicate that zinc supplementation may alter certain neutrophil functions. However, precise underlying mechanisms and possible effects of zinc deficiency remain incompletely understood. The objective of this study is to investigate the effects of changes in zinc status on formation of neutrophil extracellular traps (NETs) and other fundamental neutrophil functions.
Methods and results
Interleukin (IL)-17 and tumor necrosis factor (TNF)-α are used to simulate the inflammatory environment observed in autoimmune diseases. The study analyzes the impact of the zinc status on NETs release, using a fluorescence plate reader, and on the expression of peptidylarginine deiminase 4 (PAD4), S100A8/A9, and certain cytokines by PCR and western blot. These results show that zinc supplementation significantly reduces NETs formation and downregulates PAD4 protein expression. Zinc supplementation results in increased protein expression of interleukin-1 receptor antagonist (IL-1RA) and IL-8 in stimulated cells.
Conclusion
The results suggest that changes in extracellular zinc availability may influence the functions of neutrophils. Therefore, maintaining an appropriate zinc level is advisable for preserving innate immunity and to prevent hyper-activation of neutrophils.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.