HER2靶向疗法的进展:癌症治疗领域从单克隆抗体到双重抑制剂的发展。

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic Chemistry Pub Date : 2024-08-09 DOI:10.1016/j.bioorg.2024.107695
{"title":"HER2靶向疗法的进展:癌症治疗领域从单克隆抗体到双重抑制剂的发展。","authors":"","doi":"10.1016/j.bioorg.2024.107695","DOIUrl":null,"url":null,"abstract":"<div><p>HER2 receptors, overexpressed in certain human cancers, have drawn significant attention in cancer research due to their correlation with poor survival rates. Researchers have developed monoclonal antibodies like Trastuzumab and Pertuzumab against HER2 receptors, which have proven highly beneficial in cancer therapy. Bispecific antibodies like Zanidatamab and antibody-drug conjugates like T-DM1 have been developed to overcome the resistance associated with monotherapy. Small molecules such as Lapatinib, Neratinib, and Pyrotinib were initially developed for treating breast cancer. However, ongoing research is investigating their potential use in other types of cancer, often in combination with other medications. EGFR/HER2 dual-targeted drugs have overcome drug resistance associated with HER2-targeted monotherapy. This comprehensive review covers the structural characteristics of HER2, the HER family signaling pathway mechanism, recent findings regarding HER2 receptor involvement in various cancers, and diverse HER2-targeted therapies. This information provides a comprehensive understanding of HER2-targeted strategies in the evolving field of cancer treatment.</p></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in HER2-Targeted Therapies: From monoclonal antibodies to dual inhibitors developments in cancer treatment\",\"authors\":\"\",\"doi\":\"10.1016/j.bioorg.2024.107695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>HER2 receptors, overexpressed in certain human cancers, have drawn significant attention in cancer research due to their correlation with poor survival rates. Researchers have developed monoclonal antibodies like Trastuzumab and Pertuzumab against HER2 receptors, which have proven highly beneficial in cancer therapy. Bispecific antibodies like Zanidatamab and antibody-drug conjugates like T-DM1 have been developed to overcome the resistance associated with monotherapy. Small molecules such as Lapatinib, Neratinib, and Pyrotinib were initially developed for treating breast cancer. However, ongoing research is investigating their potential use in other types of cancer, often in combination with other medications. EGFR/HER2 dual-targeted drugs have overcome drug resistance associated with HER2-targeted monotherapy. This comprehensive review covers the structural characteristics of HER2, the HER family signaling pathway mechanism, recent findings regarding HER2 receptor involvement in various cancers, and diverse HER2-targeted therapies. This information provides a comprehensive understanding of HER2-targeted strategies in the evolving field of cancer treatment.</p></div>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004520682400600X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004520682400600X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

HER2 受体在某些人类癌症中过度表达,因其与不良生存率相关而在癌症研究中备受关注。研究人员已经开发出针对 HER2 受体的单克隆抗体,如曲妥珠单抗(Trastuzumab)和帕妥珠单抗(Pertuzumab),这些抗体已被证明对癌症治疗非常有益。为了克服与单药治疗相关的抗药性,研究人员还开发了双特异性抗体(如扎尼达姆单抗)和抗体-药物共轭物(如 T-DM1)。拉帕替尼(Lapatinib)、奈拉替尼(Neratinib)和派罗替尼(Pyrotinib)等小分子药物最初是为治疗乳腺癌而开发的。不过,目前正在研究它们在其他类型癌症中的潜在用途,通常是与其他药物联合使用。表皮生长因子受体/HER2 双靶向药物克服了与 HER2 单靶向疗法相关的耐药性。本综述涵盖了HER2的结构特征、HER家族信号通路机制、HER2受体参与各种癌症的最新发现以及多种HER2靶向疗法。通过这些信息,您可以全面了解不断发展的癌症治疗领域中的 HER2 靶向策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in HER2-Targeted Therapies: From monoclonal antibodies to dual inhibitors developments in cancer treatment

HER2 receptors, overexpressed in certain human cancers, have drawn significant attention in cancer research due to their correlation with poor survival rates. Researchers have developed monoclonal antibodies like Trastuzumab and Pertuzumab against HER2 receptors, which have proven highly beneficial in cancer therapy. Bispecific antibodies like Zanidatamab and antibody-drug conjugates like T-DM1 have been developed to overcome the resistance associated with monotherapy. Small molecules such as Lapatinib, Neratinib, and Pyrotinib were initially developed for treating breast cancer. However, ongoing research is investigating their potential use in other types of cancer, often in combination with other medications. EGFR/HER2 dual-targeted drugs have overcome drug resistance associated with HER2-targeted monotherapy. This comprehensive review covers the structural characteristics of HER2, the HER family signaling pathway mechanism, recent findings regarding HER2 receptor involvement in various cancers, and diverse HER2-targeted therapies. This information provides a comprehensive understanding of HER2-targeted strategies in the evolving field of cancer treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioorganic Chemistry
Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
9.70
自引率
3.90%
发文量
679
审稿时长
31 days
期刊介绍: Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry. For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature. The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.
期刊最新文献
Synthesis of S-alkylated oxadiazole bearing imidazo[2,1-b]thiazole derivatives targeting breast cancer: In vitro cytotoxic evaluation and in vivo radioactive tracing studies. Computational Design, Synthesis, and Bioevaluation of 2-(Pyrimidin-4-yl) oxazole-4-carboxamide Derivatives: Dual Inhibition of EGFRWT and EGFRT790M with ADMET Profiling. Unveiling cofactor inhibition mechanisms in horse liver alcohol dehydrogenase: An allosteric driven regulation. Indole-based COX-2 inhibitors: A decade of advances in inflammation, cancer, and Alzheimer's therapy. Synergy trap for guardian angels of DNA: Unraveling the anticancer potential of phthalazinone-thiosemicarbazone hybrids through dual PARP-1 and TOPO-I inhibition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1