胼胝质缺乏会调节水稻花粉母细胞和顶芽细胞的质点频率和胞外距离

IF 3.6 2区 生物学 Q1 PLANT SCIENCES Annals of botany Pub Date : 2024-12-31 DOI:10.1093/aob/mcae137
Harsha Somashekar, Keiko Takanami, Yoselin Benitez-Alfonso, Akane Oishi, Rie Hiratsuka, Ken-Ichi Nonomura
{"title":"胼胝质缺乏会调节水稻花粉母细胞和顶芽细胞的质点频率和胞外距离","authors":"Harsha Somashekar, Keiko Takanami, Yoselin Benitez-Alfonso, Akane Oishi, Rie Hiratsuka, Ken-Ichi Nonomura","doi":"10.1093/aob/mcae137","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Fertilization relies on pollen mother cells able to transition from mitosis to meiosis to supply gametes. This process involves remarkable changes at the molecular, cellular and physiological levels, including (but not limited to) remodelling of the cell wall. During the onset of meiosis, the cellulose content in the pollen mother cell walls gradually declines, with the concurrent deposition of the polysaccharide callose in anther locules. We aim to understand the biological significance of cellulose-to-callose turnover in pollen mother cells walls.</p><p><strong>Methods: </strong>We carried out electron microscopic, aniline blue and renaissance staining analyses of rice flowers.</p><p><strong>Key results: </strong>Our observations indicate that in wild-type rice anthers, the mitosis-to-meiosis transition coincides with a gradual reduction in the number of cytoplasmic connections called plasmodesmata. A mutant in the Oryza sativa callose synthase GSL5 (Osgsl5-3), impaired in callose accumulation in premeiotic and meiotic anthers, displayed a greater reduction in plasmodesmata frequency among pollen mother cells and tapetal cells, suggesting a role for callose in maintenance of plasmodesmata. In addition, a significant increase in extracellular distance between pollen mother cells and impaired premeiotic cell shaping was observed in the Osgsl5-3 mutant.</p><p><strong>Conclusions: </strong>The results suggest that callose-to-cellulose turnover during the transition from mitosis to meiosis is necessary to maintain cell-to-cell connections and optimal extracellular distance among the central anther locular cells. The findings of this study contribute to our understanding of the regulatory influence of callose metabolism during initiation of meiosis in flowering plants.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":"1013-1026"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687631/pdf/","citationCount":"0","resultStr":"{\"title\":\"Callose deficiency modulates plasmodesmata frequency and extracellular distance in rice pollen mother and tapetal cells.\",\"authors\":\"Harsha Somashekar, Keiko Takanami, Yoselin Benitez-Alfonso, Akane Oishi, Rie Hiratsuka, Ken-Ichi Nonomura\",\"doi\":\"10.1093/aob/mcae137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Fertilization relies on pollen mother cells able to transition from mitosis to meiosis to supply gametes. This process involves remarkable changes at the molecular, cellular and physiological levels, including (but not limited to) remodelling of the cell wall. During the onset of meiosis, the cellulose content in the pollen mother cell walls gradually declines, with the concurrent deposition of the polysaccharide callose in anther locules. We aim to understand the biological significance of cellulose-to-callose turnover in pollen mother cells walls.</p><p><strong>Methods: </strong>We carried out electron microscopic, aniline blue and renaissance staining analyses of rice flowers.</p><p><strong>Key results: </strong>Our observations indicate that in wild-type rice anthers, the mitosis-to-meiosis transition coincides with a gradual reduction in the number of cytoplasmic connections called plasmodesmata. A mutant in the Oryza sativa callose synthase GSL5 (Osgsl5-3), impaired in callose accumulation in premeiotic and meiotic anthers, displayed a greater reduction in plasmodesmata frequency among pollen mother cells and tapetal cells, suggesting a role for callose in maintenance of plasmodesmata. In addition, a significant increase in extracellular distance between pollen mother cells and impaired premeiotic cell shaping was observed in the Osgsl5-3 mutant.</p><p><strong>Conclusions: </strong>The results suggest that callose-to-cellulose turnover during the transition from mitosis to meiosis is necessary to maintain cell-to-cell connections and optimal extracellular distance among the central anther locular cells. The findings of this study contribute to our understanding of the regulatory influence of callose metabolism during initiation of meiosis in flowering plants.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":\" \",\"pages\":\"1013-1026\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687631/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcae137\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae137","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

受精有赖于花粉母细胞能够从有丝分裂过渡到减数分裂,以提供配子。这一过程涉及分子、细胞和生理层面的显著变化,包括(但不限于)细胞壁的重塑。在减数分裂过程中,花粉母细胞壁的纤维素含量逐渐下降,同时多糖胼胝质在花药子房中沉积。我们的目的是通过对水稻花朵进行电子显微镜分析,了解花粉母细胞壁中纤维素到胼胝质转变的生物学意义。我们的观察结果表明,在野生型水稻花药中,有丝分裂到减数分裂的转变与称为质点的细胞质连接数量逐渐减少同时发生。Oryza sativa胼胝质合成酶 GSL5(Osgsl5-3)突变体在减数分裂前期和减数分裂期花药中的胼胝质积累受到影响,花粉母细胞和舌叶细胞中的质点频率减少更多,这表明胼胝质在质点维持中的作用。此外,在 Osgsl5-3 突变体中还观察到花粉母细胞之间的细胞外距离明显增加,减数分裂前期细胞塑形受损。结果表明,在有丝分裂-减数分裂转换过程中,胼胝质到纤维素的转换对于维持花药中心子房室细胞间的细胞间连接和最佳细胞外距离是必要的。本研究的结果有助于我们理解有花植物减数分裂启动过程中胼胝质代谢的调控影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Callose deficiency modulates plasmodesmata frequency and extracellular distance in rice pollen mother and tapetal cells.

Background and aims: Fertilization relies on pollen mother cells able to transition from mitosis to meiosis to supply gametes. This process involves remarkable changes at the molecular, cellular and physiological levels, including (but not limited to) remodelling of the cell wall. During the onset of meiosis, the cellulose content in the pollen mother cell walls gradually declines, with the concurrent deposition of the polysaccharide callose in anther locules. We aim to understand the biological significance of cellulose-to-callose turnover in pollen mother cells walls.

Methods: We carried out electron microscopic, aniline blue and renaissance staining analyses of rice flowers.

Key results: Our observations indicate that in wild-type rice anthers, the mitosis-to-meiosis transition coincides with a gradual reduction in the number of cytoplasmic connections called plasmodesmata. A mutant in the Oryza sativa callose synthase GSL5 (Osgsl5-3), impaired in callose accumulation in premeiotic and meiotic anthers, displayed a greater reduction in plasmodesmata frequency among pollen mother cells and tapetal cells, suggesting a role for callose in maintenance of plasmodesmata. In addition, a significant increase in extracellular distance between pollen mother cells and impaired premeiotic cell shaping was observed in the Osgsl5-3 mutant.

Conclusions: The results suggest that callose-to-cellulose turnover during the transition from mitosis to meiosis is necessary to maintain cell-to-cell connections and optimal extracellular distance among the central anther locular cells. The findings of this study contribute to our understanding of the regulatory influence of callose metabolism during initiation of meiosis in flowering plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of botany
Annals of botany 生物-植物科学
CiteScore
7.90
自引率
4.80%
发文量
138
审稿时长
3 months
期刊介绍: Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide. The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.
期刊最新文献
Conservation genomics within government led conservation planning: an Australian case study exploring cost and benefit for threatened flora. Global diversification of the common moonwort ferns (Botrychium lunaria group, Ophioglossaceae) was mainly driven by Pleistocene climatic shifts. Niche comparisons reveal significant divergence despite narrow endemism in Leavenworthia, a genus of rare plants. Organellar phylogenomics at the epidendroid orchid base, with a focus on the mycoheterotrophic Wullschlaegelia. Temporal turnover of Ceratobasidiaceae orchid mycorrhizal fungal communities with ontogenetic and phenological development in Prasophyllum (Orchidaceae).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1