{"title":"揭开遗传性黑色素瘤的基因面纱:从易感基因到监控基因","authors":"","doi":"10.1016/j.ctarc.2024.100837","DOIUrl":null,"url":null,"abstract":"<div><p>The multifactorial etiology underlying melanoma development involves an array of genetic, phenotypic, and environmental factors. Genetic predisposition for melanoma is further influenced by the complex interplay between high-, medium-, and low-penetrance genes, each contributing to varying degrees of susceptibility. Within this network, high-penetrance genes, including <em>CDKN2A, CDK4, BAP1</em>, and <em>POT1,</em> are linked to a pronounced risk for disease, whereas medium- and low-penetrance genes, such as <em>MC1R, MITF</em>, and others, contribute only moderately to melanoma risk. Notably, these genetic factors not only heighten the risk of melanoma but may also increase susceptibility towards internal malignancies, such as pancreatic cancer, renal cell cancer, or neural tumors. Genetic testing and counseling hold paramount importance in the clinical context of suspected hereditary melanoma, facilitating risk assessment, personalized surveillance strategies, and informed decision-making. As our understanding of the genomic landscape deepens, this review paper aims to comprehensively summarize the genetic underpinnings of hereditary melanoma, as well as current screening and management strategies for the disease.</p></div>","PeriodicalId":9507,"journal":{"name":"Cancer treatment and research communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468294224000492/pdfft?md5=9f10c8ce18e2ed33ecd14aa1c68588fa&pid=1-s2.0-S2468294224000492-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unveiling the genetic landscape of hereditary melanoma: From susceptibility to surveillance\",\"authors\":\"\",\"doi\":\"10.1016/j.ctarc.2024.100837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The multifactorial etiology underlying melanoma development involves an array of genetic, phenotypic, and environmental factors. Genetic predisposition for melanoma is further influenced by the complex interplay between high-, medium-, and low-penetrance genes, each contributing to varying degrees of susceptibility. Within this network, high-penetrance genes, including <em>CDKN2A, CDK4, BAP1</em>, and <em>POT1,</em> are linked to a pronounced risk for disease, whereas medium- and low-penetrance genes, such as <em>MC1R, MITF</em>, and others, contribute only moderately to melanoma risk. Notably, these genetic factors not only heighten the risk of melanoma but may also increase susceptibility towards internal malignancies, such as pancreatic cancer, renal cell cancer, or neural tumors. Genetic testing and counseling hold paramount importance in the clinical context of suspected hereditary melanoma, facilitating risk assessment, personalized surveillance strategies, and informed decision-making. As our understanding of the genomic landscape deepens, this review paper aims to comprehensively summarize the genetic underpinnings of hereditary melanoma, as well as current screening and management strategies for the disease.</p></div>\",\"PeriodicalId\":9507,\"journal\":{\"name\":\"Cancer treatment and research communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468294224000492/pdfft?md5=9f10c8ce18e2ed33ecd14aa1c68588fa&pid=1-s2.0-S2468294224000492-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer treatment and research communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468294224000492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer treatment and research communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468294224000492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Unveiling the genetic landscape of hereditary melanoma: From susceptibility to surveillance
The multifactorial etiology underlying melanoma development involves an array of genetic, phenotypic, and environmental factors. Genetic predisposition for melanoma is further influenced by the complex interplay between high-, medium-, and low-penetrance genes, each contributing to varying degrees of susceptibility. Within this network, high-penetrance genes, including CDKN2A, CDK4, BAP1, and POT1, are linked to a pronounced risk for disease, whereas medium- and low-penetrance genes, such as MC1R, MITF, and others, contribute only moderately to melanoma risk. Notably, these genetic factors not only heighten the risk of melanoma but may also increase susceptibility towards internal malignancies, such as pancreatic cancer, renal cell cancer, or neural tumors. Genetic testing and counseling hold paramount importance in the clinical context of suspected hereditary melanoma, facilitating risk assessment, personalized surveillance strategies, and informed decision-making. As our understanding of the genomic landscape deepens, this review paper aims to comprehensively summarize the genetic underpinnings of hereditary melanoma, as well as current screening and management strategies for the disease.
期刊介绍:
Cancer Treatment and Research Communications is an international peer-reviewed publication dedicated to providing comprehensive basic, translational, and clinical oncology research. The journal is devoted to articles on detection, diagnosis, prevention, policy, and treatment of cancer and provides a global forum for the nurturing and development of future generations of oncology scientists. Cancer Treatment and Research Communications publishes comprehensive reviews and original studies describing various aspects of basic through clinical research of all tumor types. The journal also accepts clinical studies in oncology, with an emphasis on prospective early phase clinical trials. Specific areas of interest include basic, translational, and clinical research and mechanistic approaches; cancer biology; molecular carcinogenesis; genetics and genomics; stem cell and developmental biology; immunology; molecular and cellular oncology; systems biology; drug sensitivity and resistance; gene and antisense therapy; pathology, markers, and prognostic indicators; chemoprevention strategies; multimodality therapy; cancer policy; and integration of various approaches. Our mission is to be the premier source of relevant information through promoting excellence in research and facilitating the timely translation of that science to health care and clinical practice.