有机小鼠脑培养物中新皮层发育的时间动态:综合分析

IF 2.1 3区 医学 Q3 NEUROSCIENCES Journal of neurophysiology Pub Date : 2024-09-01 Epub Date: 2024-08-14 DOI:10.1152/jn.00178.2024
Aniella Bak, Katharina Schmied, Morten L Jakob, Francesco Bedogni, Olivia A Squire, Birgit Gittel, Maik Jesinghausen, Kerstin D Schünemann, Yvonne Weber, Björn Kampa, Karen M J van Loo, Henner Koch
{"title":"有机小鼠脑培养物中新皮层发育的时间动态:综合分析","authors":"Aniella Bak, Katharina Schmied, Morten L Jakob, Francesco Bedogni, Olivia A Squire, Birgit Gittel, Maik Jesinghausen, Kerstin D Schünemann, Yvonne Weber, Björn Kampa, Karen M J van Loo, Henner Koch","doi":"10.1152/jn.00178.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Murine organotypic brain slice cultures have been widely used in neuroscientific research and are offering the opportunity to study neuronal function under normal and disease conditions. Despite the broad application, the mechanisms governing the maturation of immature cortical circuits in vitro are not well understood. In this study, we present a detailed investigation into the development of the neocortex in vitro. Using a holistic approach, we studied organotypic whole hemisphere brain slice cultures from postnatal mice and tracked the development of the somatosensory area over a 5-wk period. Our analysis revealed the maturation of passive and active intrinsic properties of pyramidal cells together with their morphology, closely resembling in vivo development. Detailed multielectrode array (MEA) electrophysiological assessments and RNA expression profiling demonstrated stable network properties by 2 wk in culture, followed by the transition of spontaneous activity toward more complex patterns including high-frequency oscillations. However, culturing weeks 4 and 5 exhibited increased variability and initial signs of neuronal loss, highlighting the importance of considering developmental stages in experimental design. This comprehensive characterization is vital for understanding the temporal dynamics of the neocortical development in vitro, with implications for neuroscientific research methodologies, particularly in the investigation of diseases such as epilepsy and other neurodevelopmental disorders.<b>NEW & NOTEWORTHY</b> The development of the mouse neocortex in vitro mimics the in vivo development. Mouse brain cultures can serve as a model system for cortical development for the first 2 wk in vitro and as a model system for the adult cortex from 2 to 4 wk in vitro. Mouse organotypic brain slice cultures develop high-frequency network oscillations at γ frequency after 2 wk in vitro. Mouse brain cultures exhibit increased heterogeneity and variability after 4 wk in culture.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal dynamics of neocortical development in organotypic mouse brain cultures: a comprehensive analysis.\",\"authors\":\"Aniella Bak, Katharina Schmied, Morten L Jakob, Francesco Bedogni, Olivia A Squire, Birgit Gittel, Maik Jesinghausen, Kerstin D Schünemann, Yvonne Weber, Björn Kampa, Karen M J van Loo, Henner Koch\",\"doi\":\"10.1152/jn.00178.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Murine organotypic brain slice cultures have been widely used in neuroscientific research and are offering the opportunity to study neuronal function under normal and disease conditions. Despite the broad application, the mechanisms governing the maturation of immature cortical circuits in vitro are not well understood. In this study, we present a detailed investigation into the development of the neocortex in vitro. Using a holistic approach, we studied organotypic whole hemisphere brain slice cultures from postnatal mice and tracked the development of the somatosensory area over a 5-wk period. Our analysis revealed the maturation of passive and active intrinsic properties of pyramidal cells together with their morphology, closely resembling in vivo development. Detailed multielectrode array (MEA) electrophysiological assessments and RNA expression profiling demonstrated stable network properties by 2 wk in culture, followed by the transition of spontaneous activity toward more complex patterns including high-frequency oscillations. However, culturing weeks 4 and 5 exhibited increased variability and initial signs of neuronal loss, highlighting the importance of considering developmental stages in experimental design. This comprehensive characterization is vital for understanding the temporal dynamics of the neocortical development in vitro, with implications for neuroscientific research methodologies, particularly in the investigation of diseases such as epilepsy and other neurodevelopmental disorders.<b>NEW & NOTEWORTHY</b> The development of the mouse neocortex in vitro mimics the in vivo development. Mouse brain cultures can serve as a model system for cortical development for the first 2 wk in vitro and as a model system for the adult cortex from 2 to 4 wk in vitro. Mouse organotypic brain slice cultures develop high-frequency network oscillations at γ frequency after 2 wk in vitro. Mouse brain cultures exhibit increased heterogeneity and variability after 4 wk in culture.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00178.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00178.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

小鼠器官型脑片培养已广泛应用于神经科学研究,并为研究正常和疾病条件下的神经元功能提供了机会。尽管应用广泛,但人们对体外未成熟皮质回路的成熟机制还不甚了解。在本研究中,我们对体外新皮质的发育进行了详细调查。我们采用一种整体方法,研究了来自出生后小鼠的器官型全半球脑切片培养物,并追踪了躯体感觉区在五周时间内的发育情况。我们的分析揭示了锥体细胞的被动和主动内在特性及其形态的成熟过程,这与体内的发育过程非常相似。详细的多电极阵列(MEA)电生理评估和 RNA 表达谱分析显示,在培养两周后,网络特性趋于稳定,随后自发活动向包括高频振荡在内的更复杂模式过渡。然而,第 4 周和第 5 周显示出变异性增加和神经元丢失的初步迹象,这突出了在实验设计中考虑发育阶段的重要性。这种全面的特征描述对于了解体外神经皮质发育的时间动态至关重要,对神经科学研究方法,尤其是癫痫和其他神经发育障碍等疾病的研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal dynamics of neocortical development in organotypic mouse brain cultures: a comprehensive analysis.

Murine organotypic brain slice cultures have been widely used in neuroscientific research and are offering the opportunity to study neuronal function under normal and disease conditions. Despite the broad application, the mechanisms governing the maturation of immature cortical circuits in vitro are not well understood. In this study, we present a detailed investigation into the development of the neocortex in vitro. Using a holistic approach, we studied organotypic whole hemisphere brain slice cultures from postnatal mice and tracked the development of the somatosensory area over a 5-wk period. Our analysis revealed the maturation of passive and active intrinsic properties of pyramidal cells together with their morphology, closely resembling in vivo development. Detailed multielectrode array (MEA) electrophysiological assessments and RNA expression profiling demonstrated stable network properties by 2 wk in culture, followed by the transition of spontaneous activity toward more complex patterns including high-frequency oscillations. However, culturing weeks 4 and 5 exhibited increased variability and initial signs of neuronal loss, highlighting the importance of considering developmental stages in experimental design. This comprehensive characterization is vital for understanding the temporal dynamics of the neocortical development in vitro, with implications for neuroscientific research methodologies, particularly in the investigation of diseases such as epilepsy and other neurodevelopmental disorders.NEW & NOTEWORTHY The development of the mouse neocortex in vitro mimics the in vivo development. Mouse brain cultures can serve as a model system for cortical development for the first 2 wk in vitro and as a model system for the adult cortex from 2 to 4 wk in vitro. Mouse organotypic brain slice cultures develop high-frequency network oscillations at γ frequency after 2 wk in vitro. Mouse brain cultures exhibit increased heterogeneity and variability after 4 wk in culture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
期刊最新文献
A 5-week centrifuge-based G training with feedback on the magnitude of G force, does not improve the perception of roll tilt during simulated coordinated turns. ALTERED CONTROL OF BREATHING IN A RAT MODEL OF ALLERGIC LOWER AIRWAY INFLAMMATION. Ictal and interictal epileptic networks of 34 patients with Hypothalamic Hamartoma on scalp electroencephalography. Investigating premotor corticospinal excitability in fast and slow voluntary contractions of the elbow flexors. Rat movements reflect internal decision dynamics in an evidence accumulation task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1