以致癌为目标的癌症预防精准疗法。

IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Carcinogenesis Pub Date : 2024-11-01 Epub Date: 2024-08-14 DOI:10.1002/mc.23798
Guoguo Jin, Kangdong Liu, Zhiping Guo, Zigang Dong
{"title":"以致癌为目标的癌症预防精准疗法。","authors":"Guoguo Jin, Kangdong Liu, Zhiping Guo, Zigang Dong","doi":"10.1002/mc.23798","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer represents a major global public health burden, with new cases estimated to increase from 14 million in 2012 to 24 million by 2035. Primary prevention is an effective strategy to reduce the costs associated with cancer burden. For example, measures to ban tobacco consumption have dramatically decreased lung cancer incidence and vaccination against human papillomavirus can prevent cervical cancer development. Unfortunately, the etiological factors of many cancer types are not completely clear or are difficult to actively control; therefore, the primary prevention of such cancers is not practical. In this review, we update the progress on precision therapy by targeting the whole carcinogenesis process, especially for three high-risk groups: (1) those with chronic inflammation, (2) those with inherited germline mutations, and (3) those with precancerous lesions like polyps, gastritis, actinic keratosis or dysplasia. We believe that attenuating chronic inflammation, treating precancerous lesions, and removing high-risk tissues harboring germline mutations are precision methods for cancer prevention.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"2045-2062"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision therapy for cancer prevention by targeting carcinogenesis.\",\"authors\":\"Guoguo Jin, Kangdong Liu, Zhiping Guo, Zigang Dong\",\"doi\":\"10.1002/mc.23798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer represents a major global public health burden, with new cases estimated to increase from 14 million in 2012 to 24 million by 2035. Primary prevention is an effective strategy to reduce the costs associated with cancer burden. For example, measures to ban tobacco consumption have dramatically decreased lung cancer incidence and vaccination against human papillomavirus can prevent cervical cancer development. Unfortunately, the etiological factors of many cancer types are not completely clear or are difficult to actively control; therefore, the primary prevention of such cancers is not practical. In this review, we update the progress on precision therapy by targeting the whole carcinogenesis process, especially for three high-risk groups: (1) those with chronic inflammation, (2) those with inherited germline mutations, and (3) those with precancerous lesions like polyps, gastritis, actinic keratosis or dysplasia. We believe that attenuating chronic inflammation, treating precancerous lesions, and removing high-risk tissues harboring germline mutations are precision methods for cancer prevention.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"2045-2062\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.23798\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23798","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症是全球公共卫生的一大负担,据估计,新发病例将从 2012 年的 1400 万增加到 2035 年的 2400 万。初级预防是降低癌症负担相关成本的有效策略。例如,禁止吸烟的措施大大降低了肺癌的发病率,接种人类乳头瘤病毒疫苗可以预防宫颈癌的发生。遗憾的是,许多癌症类型的致病因素尚未完全明确或难以主动控制,因此,对这类癌症进行一级预防并不现实。在这篇综述中,我们将介绍针对整个致癌过程的精准治疗的最新进展,尤其是针对以下三类高危人群的精准治疗:(1)慢性炎症患者;(2)遗传性基因突变患者;(3)息肉、胃炎、光化性角化病或发育不良等癌前病变患者。我们认为,减轻慢性炎症、治疗癌前病变和清除携带种系突变的高危组织是预防癌症的精确方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Precision therapy for cancer prevention by targeting carcinogenesis.

Cancer represents a major global public health burden, with new cases estimated to increase from 14 million in 2012 to 24 million by 2035. Primary prevention is an effective strategy to reduce the costs associated with cancer burden. For example, measures to ban tobacco consumption have dramatically decreased lung cancer incidence and vaccination against human papillomavirus can prevent cervical cancer development. Unfortunately, the etiological factors of many cancer types are not completely clear or are difficult to actively control; therefore, the primary prevention of such cancers is not practical. In this review, we update the progress on precision therapy by targeting the whole carcinogenesis process, especially for three high-risk groups: (1) those with chronic inflammation, (2) those with inherited germline mutations, and (3) those with precancerous lesions like polyps, gastritis, actinic keratosis or dysplasia. We believe that attenuating chronic inflammation, treating precancerous lesions, and removing high-risk tissues harboring germline mutations are precision methods for cancer prevention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
期刊最新文献
Inhibition of XPR1-dependent phosphate efflux induces mitochondrial dysfunction: A potential molecular target therapy for hepatocellular carcinoma? Oncogenic fusion of CD63-BCAR4 contributes cancer stem cell-like properties via ALDH1 activity. SIRT1 promotes doxorubicin-induced breast cancer drug resistance and tumor angiogenesis via regulating GSH-mediated redox homeostasis. Oscillatory hypoxia induced gene expression predicts low survival in human breast cancer patients. ROR2 promotes cell cycle progression and cell proliferation through the PI3K/AKT signaling pathway in gastric cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1