Zhifang Tang, Longjun Shu, Zijian Cao, Yongqing Xu, Chuan Li
{"title":"骨关节炎大鼠血清衍生的细胞外囊泡通过诱导 NLRP3 介导的细胞凋亡和细胞炎症加剧了骨关节炎的发展。","authors":"Zhifang Tang, Longjun Shu, Zijian Cao, Yongqing Xu, Chuan Li","doi":"10.1007/s13577-024-01119-1","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA), degenerative joint disease, is the most prevalent form of arthritis worldwide. Besides its substantial burden on society, the high OA morbidity greatly diminishes patients' quality of life. According to recent research, patients-derived serum extracellular vesicles (EVs) are critically involved in sustaining the corresponding disease progression. However, limited research has fully explored the specific functions and molecular mechanisms of OA serum-derived EVs in disease progression. Consequently, we aimed to investigate the underlying mechanism of OA rats-derived serum EVs in regulating OA progression. Before constructing the exosome-cell co-culture system, EVs were extracted from OA and control rat serum and co-cultured with bone marrow mesenchymal stem cells (BM-MSCs). Western blotting (WB), RT-qPCR, and enzyme-linked immunosorbent assay (ELISA) results revealed that OA rat serum-derived EVs upregulated cell pyroptosis-related markers, including nod-Like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin D (GSDMD), and cleaved caspase-1. The OA rat-EVs also induced the release of LDH and inflammatory cytokines, including interleukin (IL)-1β, IL-18, IL-6, and TNF-α. Additional experiments revealed that OA rat-EVs delivered miR-133a-3p to BM-MSCs and upregulated miR-133a-3p to degrade sirtuin 1 (SIRT1), and activating the downstream NF-κB signaling pathway. Furthermore, the rescuing experiments confirmed that silencing SIRT1 abrogated the miR-133a-3p-induced protective effects in OA-EVs-treated BM-MSCs. In conclusion, OA rats-derived miR-133a-3p-containing EVs modulated the downstream SIRT1/NF-κB pathway-mediated pyroptotic cell death and inflammation in OA. In other words, this study confirmed the role and underlying mechanisms by which OA-associated serum EVs regulate pyroptosis and inflammation response in OA development.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osteoarthritis rat serum-derived extracellular vesicles aggravate osteoarthritis development by inducing NLRP3-mediated pyroptotic cell death and cellular inflammation.\",\"authors\":\"Zhifang Tang, Longjun Shu, Zijian Cao, Yongqing Xu, Chuan Li\",\"doi\":\"10.1007/s13577-024-01119-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA), degenerative joint disease, is the most prevalent form of arthritis worldwide. Besides its substantial burden on society, the high OA morbidity greatly diminishes patients' quality of life. According to recent research, patients-derived serum extracellular vesicles (EVs) are critically involved in sustaining the corresponding disease progression. However, limited research has fully explored the specific functions and molecular mechanisms of OA serum-derived EVs in disease progression. Consequently, we aimed to investigate the underlying mechanism of OA rats-derived serum EVs in regulating OA progression. Before constructing the exosome-cell co-culture system, EVs were extracted from OA and control rat serum and co-cultured with bone marrow mesenchymal stem cells (BM-MSCs). Western blotting (WB), RT-qPCR, and enzyme-linked immunosorbent assay (ELISA) results revealed that OA rat serum-derived EVs upregulated cell pyroptosis-related markers, including nod-Like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin D (GSDMD), and cleaved caspase-1. The OA rat-EVs also induced the release of LDH and inflammatory cytokines, including interleukin (IL)-1β, IL-18, IL-6, and TNF-α. Additional experiments revealed that OA rat-EVs delivered miR-133a-3p to BM-MSCs and upregulated miR-133a-3p to degrade sirtuin 1 (SIRT1), and activating the downstream NF-κB signaling pathway. Furthermore, the rescuing experiments confirmed that silencing SIRT1 abrogated the miR-133a-3p-induced protective effects in OA-EVs-treated BM-MSCs. In conclusion, OA rats-derived miR-133a-3p-containing EVs modulated the downstream SIRT1/NF-κB pathway-mediated pyroptotic cell death and inflammation in OA. In other words, this study confirmed the role and underlying mechanisms by which OA-associated serum EVs regulate pyroptosis and inflammation response in OA development.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-024-01119-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01119-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Osteoarthritis rat serum-derived extracellular vesicles aggravate osteoarthritis development by inducing NLRP3-mediated pyroptotic cell death and cellular inflammation.
Osteoarthritis (OA), degenerative joint disease, is the most prevalent form of arthritis worldwide. Besides its substantial burden on society, the high OA morbidity greatly diminishes patients' quality of life. According to recent research, patients-derived serum extracellular vesicles (EVs) are critically involved in sustaining the corresponding disease progression. However, limited research has fully explored the specific functions and molecular mechanisms of OA serum-derived EVs in disease progression. Consequently, we aimed to investigate the underlying mechanism of OA rats-derived serum EVs in regulating OA progression. Before constructing the exosome-cell co-culture system, EVs were extracted from OA and control rat serum and co-cultured with bone marrow mesenchymal stem cells (BM-MSCs). Western blotting (WB), RT-qPCR, and enzyme-linked immunosorbent assay (ELISA) results revealed that OA rat serum-derived EVs upregulated cell pyroptosis-related markers, including nod-Like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin D (GSDMD), and cleaved caspase-1. The OA rat-EVs also induced the release of LDH and inflammatory cytokines, including interleukin (IL)-1β, IL-18, IL-6, and TNF-α. Additional experiments revealed that OA rat-EVs delivered miR-133a-3p to BM-MSCs and upregulated miR-133a-3p to degrade sirtuin 1 (SIRT1), and activating the downstream NF-κB signaling pathway. Furthermore, the rescuing experiments confirmed that silencing SIRT1 abrogated the miR-133a-3p-induced protective effects in OA-EVs-treated BM-MSCs. In conclusion, OA rats-derived miR-133a-3p-containing EVs modulated the downstream SIRT1/NF-κB pathway-mediated pyroptotic cell death and inflammation in OA. In other words, this study confirmed the role and underlying mechanisms by which OA-associated serum EVs regulate pyroptosis and inflammation response in OA development.