F Phil Brooks, Hunter C Davis, J David Wong-Campos, Adam E Cohen
{"title":"双光子电压成像的光学限制。","authors":"F Phil Brooks, Hunter C Davis, J David Wong-Campos, Adam E Cohen","doi":"10.1117/1.NPh.11.3.035007","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Genetically encoded voltage indicators (GEVIs) are a valuable tool for studying neural circuits <i>in vivo</i>, but the relative merits and limitations of one-photon (1P) versus two-photon (2P) voltage imaging are not well characterized.</p><p><strong>Aim: </strong>We consider the optical and biophysical constraints particular to 1P and 2P voltage imaging and compare the imaging properties of commonly used GEVIs under 1P and 2P excitation.</p><p><strong>Approach: </strong>We measure the brightness and voltage sensitivity of voltage indicators from commonly used classes under 1P and 2P illumination. We also measure the decrease in fluorescence as a function of depth in the mouse brain. We develop a simple model of the number of measurable cells as a function of reporter properties, imaging parameters, and desired signal-to-noise ratio (SNR). We then discuss how the performance of voltage imaging would be affected by sensor improvements and by recently introduced advanced imaging modalities.</p><p><strong>Results: </strong>Compared with 1P excitation, 2P excitation requires <math><mrow><mo>∼</mo> <msup><mrow><mn>10</mn></mrow> <mrow><mn>4</mn></mrow> </msup> </mrow> </math> -fold more illumination power per cell to produce similar photon count rates. For voltage imaging with JEDI-2P in the mouse cortex with a target SNR of 10 (spike height to baseline shot noise), a measurement bandwidth of 1 kHz, a thermally limited laser power of 200 mW, and an imaging depth of <math><mrow><mo>></mo> <mn>300</mn> <mtext> </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , 2P voltage imaging using an 80-MHz source can record from no more than <math><mrow><mo>∼</mo> <mn>12</mn></mrow> </math> neurons simultaneously.</p><p><strong>Conclusions: </strong>Due to the stringent photon-count requirements of voltage imaging and the modest voltage sensitivity of existing reporters, 2P voltage imaging <i>in vivo</i> faces a stringent tradeoff between shot noise and tissue photodamage. 2P imaging of hundreds of neurons with high SNR at a depth of <math><mrow><mo>></mo> <mn>300</mn> <mtext> </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> will require either major improvements in 2P GEVIs or qualitatively new approaches to imaging.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 3","pages":"035007"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321468/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optical constraints on two-photon voltage imaging.\",\"authors\":\"F Phil Brooks, Hunter C Davis, J David Wong-Campos, Adam E Cohen\",\"doi\":\"10.1117/1.NPh.11.3.035007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Genetically encoded voltage indicators (GEVIs) are a valuable tool for studying neural circuits <i>in vivo</i>, but the relative merits and limitations of one-photon (1P) versus two-photon (2P) voltage imaging are not well characterized.</p><p><strong>Aim: </strong>We consider the optical and biophysical constraints particular to 1P and 2P voltage imaging and compare the imaging properties of commonly used GEVIs under 1P and 2P excitation.</p><p><strong>Approach: </strong>We measure the brightness and voltage sensitivity of voltage indicators from commonly used classes under 1P and 2P illumination. We also measure the decrease in fluorescence as a function of depth in the mouse brain. We develop a simple model of the number of measurable cells as a function of reporter properties, imaging parameters, and desired signal-to-noise ratio (SNR). We then discuss how the performance of voltage imaging would be affected by sensor improvements and by recently introduced advanced imaging modalities.</p><p><strong>Results: </strong>Compared with 1P excitation, 2P excitation requires <math><mrow><mo>∼</mo> <msup><mrow><mn>10</mn></mrow> <mrow><mn>4</mn></mrow> </msup> </mrow> </math> -fold more illumination power per cell to produce similar photon count rates. For voltage imaging with JEDI-2P in the mouse cortex with a target SNR of 10 (spike height to baseline shot noise), a measurement bandwidth of 1 kHz, a thermally limited laser power of 200 mW, and an imaging depth of <math><mrow><mo>></mo> <mn>300</mn> <mtext> </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , 2P voltage imaging using an 80-MHz source can record from no more than <math><mrow><mo>∼</mo> <mn>12</mn></mrow> </math> neurons simultaneously.</p><p><strong>Conclusions: </strong>Due to the stringent photon-count requirements of voltage imaging and the modest voltage sensitivity of existing reporters, 2P voltage imaging <i>in vivo</i> faces a stringent tradeoff between shot noise and tissue photodamage. 2P imaging of hundreds of neurons with high SNR at a depth of <math><mrow><mo>></mo> <mn>300</mn> <mtext> </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> will require either major improvements in 2P GEVIs or qualitatively new approaches to imaging.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"11 3\",\"pages\":\"035007\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321468/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.11.3.035007\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.3.035007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Optical constraints on two-photon voltage imaging.
Significance: Genetically encoded voltage indicators (GEVIs) are a valuable tool for studying neural circuits in vivo, but the relative merits and limitations of one-photon (1P) versus two-photon (2P) voltage imaging are not well characterized.
Aim: We consider the optical and biophysical constraints particular to 1P and 2P voltage imaging and compare the imaging properties of commonly used GEVIs under 1P and 2P excitation.
Approach: We measure the brightness and voltage sensitivity of voltage indicators from commonly used classes under 1P and 2P illumination. We also measure the decrease in fluorescence as a function of depth in the mouse brain. We develop a simple model of the number of measurable cells as a function of reporter properties, imaging parameters, and desired signal-to-noise ratio (SNR). We then discuss how the performance of voltage imaging would be affected by sensor improvements and by recently introduced advanced imaging modalities.
Results: Compared with 1P excitation, 2P excitation requires -fold more illumination power per cell to produce similar photon count rates. For voltage imaging with JEDI-2P in the mouse cortex with a target SNR of 10 (spike height to baseline shot noise), a measurement bandwidth of 1 kHz, a thermally limited laser power of 200 mW, and an imaging depth of , 2P voltage imaging using an 80-MHz source can record from no more than neurons simultaneously.
Conclusions: Due to the stringent photon-count requirements of voltage imaging and the modest voltage sensitivity of existing reporters, 2P voltage imaging in vivo faces a stringent tradeoff between shot noise and tissue photodamage. 2P imaging of hundreds of neurons with high SNR at a depth of will require either major improvements in 2P GEVIs or qualitatively new approaches to imaging.
期刊介绍:
At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.