RVDLAHA:用于可穿戴应用中设备上实时癫痫发作检测和个性化的 RISC-V DLA 硬件架构。

Shuenn-Yuh Lee, Ming-Yueh Ku, Yen-Hsing Tsai, Chou-Ching Lin
{"title":"RVDLAHA:用于可穿戴应用中设备上实时癫痫发作检测和个性化的 RISC-V DLA 硬件架构。","authors":"Shuenn-Yuh Lee, Ming-Yueh Ku, Yen-Hsing Tsai, Chou-Ching Lin","doi":"10.1109/TBCAS.2024.3442250","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is a globally distributed chronic neurological disorder that may pose a threat to life without warning. Therefore, the use of wearable devices for real-time detection and treatment of epilepsy is crucial. Additionally, personalizing disease detection algorithms for individual users is also a challenge in clinical applications. Some studies have proposed seizure detection algorithms with convolutional neural networks (CNNs) and programmable hardware architectures for speeding up the process of CNN inference. However, personalizing seizure detection algorithms could still not be performed on these hardware architectures. Consequently, this study proposes three key contributions to address the challenges: a real-time seizure detection and personalization algorithm, a programmable reduced instruction set computer-V (RISC-V) deep learning accelerator (DLA) hardware architecture (RVDLAHA), and a dedicated RISC-V DLA (RVDLA) compiler. In animal experiments with lab rats, the proposed CNN-based seizure detection algorithm obtains an accuracy of 99.5% for a 32-bit floating point and an accuracy of 99.3% for a 16-bit fixed point. Additionally, the proposed personalization algorithm increases the testing accuracy across different databases from 85.0% to 92.9%. The RVDLAHA is implemented on Xilinx PYNQ-Z2, with a power consumption of only 0.107 W at an operating frequency of 1 MHz. Each step, including raw data input, preprocessing, detection, and personalization, requires only 17.8, 1.0, 1.1, and 1.3 ms, respectively. With the hardware architecture, the seizure detection and personalization algorithm can provide on-device real-time monitoring.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RVDLAHA: An RISC-V DLA Hardware Architecture for On-Device Real-Time Seizure Detection and Personalization in Wearable Applications.\",\"authors\":\"Shuenn-Yuh Lee, Ming-Yueh Ku, Yen-Hsing Tsai, Chou-Ching Lin\",\"doi\":\"10.1109/TBCAS.2024.3442250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epilepsy is a globally distributed chronic neurological disorder that may pose a threat to life without warning. Therefore, the use of wearable devices for real-time detection and treatment of epilepsy is crucial. Additionally, personalizing disease detection algorithms for individual users is also a challenge in clinical applications. Some studies have proposed seizure detection algorithms with convolutional neural networks (CNNs) and programmable hardware architectures for speeding up the process of CNN inference. However, personalizing seizure detection algorithms could still not be performed on these hardware architectures. Consequently, this study proposes three key contributions to address the challenges: a real-time seizure detection and personalization algorithm, a programmable reduced instruction set computer-V (RISC-V) deep learning accelerator (DLA) hardware architecture (RVDLAHA), and a dedicated RISC-V DLA (RVDLA) compiler. In animal experiments with lab rats, the proposed CNN-based seizure detection algorithm obtains an accuracy of 99.5% for a 32-bit floating point and an accuracy of 99.3% for a 16-bit fixed point. Additionally, the proposed personalization algorithm increases the testing accuracy across different databases from 85.0% to 92.9%. The RVDLAHA is implemented on Xilinx PYNQ-Z2, with a power consumption of only 0.107 W at an operating frequency of 1 MHz. Each step, including raw data input, preprocessing, detection, and personalization, requires only 17.8, 1.0, 1.1, and 1.3 ms, respectively. With the hardware architecture, the seizure detection and personalization algorithm can provide on-device real-time monitoring.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2024.3442250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3442250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癫痫是一种遍布全球的慢性神经系统疾病,可能会在毫无征兆的情况下对生命造成威胁。因此,使用可穿戴设备对癫痫进行实时检测和治疗至关重要。此外,针对个人用户的个性化疾病检测算法也是临床应用中的一项挑战。一些研究提出了利用卷积神经网络(CNN)和可编程硬件架构加速 CNN 推断过程的癫痫发作检测算法。然而,个性化癫痫发作检测算法仍无法在这些硬件架构上实现。因此,本研究提出了应对挑战的三大贡献:实时癫痫发作检测和个性化算法、可编程精简指令集计算机-V(RISC-V)深度学习加速器(DLA)硬件架构(RVDLAHA)和专用 RISC-V DLA(RVDLA)编译器。在以实验鼠为对象的动物实验中,所提出的基于 CNN 的癫痫发作检测算法在 32 位浮点时的准确率达到 99.5%,在 16 位定点时的准确率达到 99.3%。此外,所提出的个性化算法还将不同数据库的检测准确率从 85.0% 提高到 92.9%。RVDLAHA 在 Xilinx PYNQ-Z2 上实现,工作频率为 1 MHz 时功耗仅为 0.107 W。每个步骤,包括原始数据输入、预处理、检测和个性化,分别只需要 17.8、1.0、1.1 和 1.3 毫秒。利用该硬件架构,癫痫发作检测和个性化算法可提供设备上的实时监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RVDLAHA: An RISC-V DLA Hardware Architecture for On-Device Real-Time Seizure Detection and Personalization in Wearable Applications.

Epilepsy is a globally distributed chronic neurological disorder that may pose a threat to life without warning. Therefore, the use of wearable devices for real-time detection and treatment of epilepsy is crucial. Additionally, personalizing disease detection algorithms for individual users is also a challenge in clinical applications. Some studies have proposed seizure detection algorithms with convolutional neural networks (CNNs) and programmable hardware architectures for speeding up the process of CNN inference. However, personalizing seizure detection algorithms could still not be performed on these hardware architectures. Consequently, this study proposes three key contributions to address the challenges: a real-time seizure detection and personalization algorithm, a programmable reduced instruction set computer-V (RISC-V) deep learning accelerator (DLA) hardware architecture (RVDLAHA), and a dedicated RISC-V DLA (RVDLA) compiler. In animal experiments with lab rats, the proposed CNN-based seizure detection algorithm obtains an accuracy of 99.5% for a 32-bit floating point and an accuracy of 99.3% for a 16-bit fixed point. Additionally, the proposed personalization algorithm increases the testing accuracy across different databases from 85.0% to 92.9%. The RVDLAHA is implemented on Xilinx PYNQ-Z2, with a power consumption of only 0.107 W at an operating frequency of 1 MHz. Each step, including raw data input, preprocessing, detection, and personalization, requires only 17.8, 1.0, 1.1, and 1.3 ms, respectively. With the hardware architecture, the seizure detection and personalization algorithm can provide on-device real-time monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing. BrainForest: Neuromorphic Multiplier-Less Bit-Serial Weight-Memory-Optimized 1024-Tree Brain-State Classification Processor. Fully Integrated Pneumatic-Free and Magnet-Free CMOS Ferrofluidic Platform for Comprehensive Biomolecular Processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1