可生物降解磷酸镁陶瓷在骨科应用方面的研究进展。

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Journal of Materials Chemistry B Pub Date : 2024-07-30 DOI:10.1039/D4TB01123F
Kaushik Sarkar
{"title":"可生物降解磷酸镁陶瓷在骨科应用方面的研究进展。","authors":"Kaushik Sarkar","doi":"10.1039/D4TB01123F","DOIUrl":null,"url":null,"abstract":"<p >To overcome critical size bone defects, calcium phosphate (CaP)-based ceramics have been widely explored. The compositional similarity with bone matrix and degradability are the main reasons for their selection in orthopaedic biomaterials. However, the low solubility rate under <em>in vivo</em> conditions raises concerns about these CaP groups, particularly hydroxyapatite (HA) and tricalcium phosphate (TCP) ceramics. Therefore, reliable and suitable degradable ceramics for bone defect repair are always an important research direction for researchers. The magnesium phosphate (MgP) group of bioceramics has been studied for orthopaedic applications and is comparatively new compared to traditional CaP ceramics. The role of magnesium in different biochemical processes, such as DNA stabilization, bone density maintenance, regulating Ca and Na ion channels, and cell proliferation and differentiation enhancement, is a key parameter for the development of MgP bioceramics. This article aims to give a comprehensive review of MgP ceramics in bone tissue engineering. Here, we have highlighted several preparation techniques, the existence of porosity, and the impact of metal ion doping on MgP bioceramics. Finally, <em>in vitro</em> and <em>in vivo</em> responses of MgP bioceramics in bone formation are discussed.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progress on biodegradable magnesium phosphate ceramics in orthopaedic applications\",\"authors\":\"Kaushik Sarkar\",\"doi\":\"10.1039/D4TB01123F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To overcome critical size bone defects, calcium phosphate (CaP)-based ceramics have been widely explored. The compositional similarity with bone matrix and degradability are the main reasons for their selection in orthopaedic biomaterials. However, the low solubility rate under <em>in vivo</em> conditions raises concerns about these CaP groups, particularly hydroxyapatite (HA) and tricalcium phosphate (TCP) ceramics. Therefore, reliable and suitable degradable ceramics for bone defect repair are always an important research direction for researchers. The magnesium phosphate (MgP) group of bioceramics has been studied for orthopaedic applications and is comparatively new compared to traditional CaP ceramics. The role of magnesium in different biochemical processes, such as DNA stabilization, bone density maintenance, regulating Ca and Na ion channels, and cell proliferation and differentiation enhancement, is a key parameter for the development of MgP bioceramics. This article aims to give a comprehensive review of MgP ceramics in bone tissue engineering. Here, we have highlighted several preparation techniques, the existence of porosity, and the impact of metal ion doping on MgP bioceramics. Finally, <em>in vitro</em> and <em>in vivo</em> responses of MgP bioceramics in bone formation are discussed.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01123f\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01123f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

为了克服临界尺寸骨缺损,以磷酸钙(CaP)为基础的陶瓷被广泛应用。其成分与骨基质相似,且可降解,是骨科生物材料选择它们的主要原因。然而,这些 CaP 组,尤其是羟基磷灰石(HA)和磷酸三钙(TCP)陶瓷在体内的低溶解率引起了人们的关注。因此,用于骨缺损修复的可靠、合适的可降解陶瓷一直是研究人员的重要研究方向。与传统的 CaP 陶瓷相比,磷酸镁(MgP)类生物陶瓷是一种相对较新的骨科应用。镁在不同生化过程中的作用,如 DNA 稳定、骨密度维持、Ca 和 Na 离子通道调节、细胞增殖和分化增强等,是开发 MgP 生物陶瓷的关键参数。本文旨在全面综述骨组织工程中的 MgP 陶瓷。在此,我们重点介绍了几种制备技术、多孔性的存在以及金属离子掺杂对 MgP 生物陶瓷的影响。最后,我们还讨论了 MgP 生物陶瓷在骨形成过程中的体外和体内反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research progress on biodegradable magnesium phosphate ceramics in orthopaedic applications

To overcome critical size bone defects, calcium phosphate (CaP)-based ceramics have been widely explored. The compositional similarity with bone matrix and degradability are the main reasons for their selection in orthopaedic biomaterials. However, the low solubility rate under in vivo conditions raises concerns about these CaP groups, particularly hydroxyapatite (HA) and tricalcium phosphate (TCP) ceramics. Therefore, reliable and suitable degradable ceramics for bone defect repair are always an important research direction for researchers. The magnesium phosphate (MgP) group of bioceramics has been studied for orthopaedic applications and is comparatively new compared to traditional CaP ceramics. The role of magnesium in different biochemical processes, such as DNA stabilization, bone density maintenance, regulating Ca and Na ion channels, and cell proliferation and differentiation enhancement, is a key parameter for the development of MgP bioceramics. This article aims to give a comprehensive review of MgP ceramics in bone tissue engineering. Here, we have highlighted several preparation techniques, the existence of porosity, and the impact of metal ion doping on MgP bioceramics. Finally, in vitro and in vivo responses of MgP bioceramics in bone formation are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
期刊最新文献
Back cover Back cover Development and evaluation of 3D composite scaffolds with piezoelectricity and biofactor synergy for enhanced articular cartilage regeneration Tissue adhesives based on chitosan for biomedical applications Photopatterning of conductive hydrogels which exhibit tissue-like properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1