UPrime:可证明收敛性的无卷相位检索迭代法

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-08-10 DOI:10.1016/j.sigpro.2024.109640
Baoshun Shi, Yating Gao, Runze Zhang
{"title":"UPrime:可证明收敛性的无卷相位检索迭代法","authors":"Baoshun Shi,&nbsp;Yating Gao,&nbsp;Runze Zhang","doi":"10.1016/j.sigpro.2024.109640","DOIUrl":null,"url":null,"abstract":"<div><p>Phase Retrieval (PR) is an ill-posed inverse problem which arises in various science and engineering applications. Recently, it has been empirically shown that unrolled iterative methods or model-driven deep learning methods are effective for solving this problem. However, the prior modules in these model-driven networks lack model interpretability, leading to a lack of rigorous analysis about the convergence behaviors of these re-implemented iterations, and thus the significance of such PR methods is a little bit vague. For this issue, this paper proposes an effective and provable Unrolled Phase Retrieval Iterative MEthod (UPrime) for the PR problem. Our theoretical analysis demonstrates that UPrime using an elaborated bounded prior module can generate fixed-point convergent trajectories. Meanwhile, the proposed prior module, a flexible and interpretable module, is beneficial for the convergence analysis of regularized imaging methods in the non-convex scenario. Experiments on coded diffraction imaging applications verify the superiority of UPrime.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"226 ","pages":"Article 109640"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165168424002603/pdfft?md5=ec635469d9dfef2bdc0cf04659717546&pid=1-s2.0-S0165168424002603-main.pdf","citationCount":"0","resultStr":"{\"title\":\"UPrime: Unrolled Phase Retrieval Iterative Method with provable convergence\",\"authors\":\"Baoshun Shi,&nbsp;Yating Gao,&nbsp;Runze Zhang\",\"doi\":\"10.1016/j.sigpro.2024.109640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phase Retrieval (PR) is an ill-posed inverse problem which arises in various science and engineering applications. Recently, it has been empirically shown that unrolled iterative methods or model-driven deep learning methods are effective for solving this problem. However, the prior modules in these model-driven networks lack model interpretability, leading to a lack of rigorous analysis about the convergence behaviors of these re-implemented iterations, and thus the significance of such PR methods is a little bit vague. For this issue, this paper proposes an effective and provable Unrolled Phase Retrieval Iterative MEthod (UPrime) for the PR problem. Our theoretical analysis demonstrates that UPrime using an elaborated bounded prior module can generate fixed-point convergent trajectories. Meanwhile, the proposed prior module, a flexible and interpretable module, is beneficial for the convergence analysis of regularized imaging methods in the non-convex scenario. Experiments on coded diffraction imaging applications verify the superiority of UPrime.</p></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"226 \",\"pages\":\"Article 109640\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165168424002603/pdfft?md5=ec635469d9dfef2bdc0cf04659717546&pid=1-s2.0-S0165168424002603-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424002603\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424002603","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

相位检索(PR)是一个在各种科学和工程应用中出现的难以解决的逆问题。最近的经验表明,未滚动迭代方法或模型驱动的深度学习方法可以有效解决这一问题。然而,这些模型驱动网络中的先验模块缺乏模型可解释性,导致这些重新实现的迭代的收敛行为缺乏严谨的分析,因此这类公关方法的意义有些模糊。针对这一问题,本文针对 PR 问题提出了一种有效且可证明的 Unrolled Phase Retrieval Iterative MEthod(UPrime)。我们的理论分析表明,UPrime 使用精心设计的有界先验模块可以生成定点收敛轨迹。同时,所提出的先验模块是一个灵活且可解释的模块,有利于在非凸情况下对正则化成像方法进行收敛分析。编码衍射成像应用实验验证了 UPrime 的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UPrime: Unrolled Phase Retrieval Iterative Method with provable convergence

Phase Retrieval (PR) is an ill-posed inverse problem which arises in various science and engineering applications. Recently, it has been empirically shown that unrolled iterative methods or model-driven deep learning methods are effective for solving this problem. However, the prior modules in these model-driven networks lack model interpretability, leading to a lack of rigorous analysis about the convergence behaviors of these re-implemented iterations, and thus the significance of such PR methods is a little bit vague. For this issue, this paper proposes an effective and provable Unrolled Phase Retrieval Iterative MEthod (UPrime) for the PR problem. Our theoretical analysis demonstrates that UPrime using an elaborated bounded prior module can generate fixed-point convergent trajectories. Meanwhile, the proposed prior module, a flexible and interpretable module, is beneficial for the convergence analysis of regularized imaging methods in the non-convex scenario. Experiments on coded diffraction imaging applications verify the superiority of UPrime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Distributed filtering with time-varying topology: A temporal-difference learning approach in dual games Editorial Board MABDT: Multi-scale attention boosted deformable transformer for remote sensing image dehazing A new method for judging thermal image quality with applications Learning feature-weighted regularization discriminative correlation filters for real-time UAV tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1