正交编织 GFRP 面板和 PVC 泡沫芯材复合夹层板单次和重复冲击破坏响应的实验和分析研究

IF 5.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Impact Engineering Pub Date : 2024-08-08 DOI:10.1016/j.ijimpeng.2024.105064
Wei Cai , Ling Zhu , Kaidong Zheng , Junkang Xia , Dongfeng Cao , Haixiao Hu , Shuxin Li
{"title":"正交编织 GFRP 面板和 PVC 泡沫芯材复合夹层板单次和重复冲击破坏响应的实验和分析研究","authors":"Wei Cai ,&nbsp;Ling Zhu ,&nbsp;Kaidong Zheng ,&nbsp;Junkang Xia ,&nbsp;Dongfeng Cao ,&nbsp;Haixiao Hu ,&nbsp;Shuxin Li","doi":"10.1016/j.ijimpeng.2024.105064","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the unique design requirements for high load-bearing capacity of ship structures, composite materials used in the marine industry are gradually being developed with the characteristics of multi-layer sandwich structures with large thickness and cross-section, which are different from thin-walled composite materials widely applied in the aeronautical industry. However, sandwich composite materials used in marine structures have high susceptibility to impact event during in-service applications. The impact induced damage may seriously affect their mechanical performance and structural safety. Therefore, a comprehensive investigation in this paper on the failure mechanisms of composite sandwich panels with orthogonal woven GFRP facesheets and a PVC foam core layer is carried out with a series of single and repetitive low-velocity impact tests. The variations of impact force, dent depth, structural stiffness, failure modes, energy absorption and so on of composite sandwich panels against impact energy levels and impact numbers were explored. The results demonstrate that the delamination damage threshold at the first impact, the sudden drop of peak force and the slow descent process of impact force are the three typical characteristics of impact responses that corresponded to delamination initiation and fibre breakage of the upper panel, and compression damage of the core layer, respectively. The accumulated impact-induced damage has a significant negative effect on load-bearing and energy-absorption capabilities of composite sandwich panels. Moreover, an approximate theoretical analytical method is presented to solve the impact resistance of composite sandwich panels. The analytical results are compared well with experimental results. This research provides a detailed understanding of the damage mechanisms of composite sandwich panels under impact loadings and a guidance for impact resistant design of ship protective structures.</p></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"194 ","pages":"Article 105064"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and analytical investigations on single and repetitive impact failure responses of composite sandwich panels with orthogonal woven GFRP facesheets and PVC foam cores\",\"authors\":\"Wei Cai ,&nbsp;Ling Zhu ,&nbsp;Kaidong Zheng ,&nbsp;Junkang Xia ,&nbsp;Dongfeng Cao ,&nbsp;Haixiao Hu ,&nbsp;Shuxin Li\",\"doi\":\"10.1016/j.ijimpeng.2024.105064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the unique design requirements for high load-bearing capacity of ship structures, composite materials used in the marine industry are gradually being developed with the characteristics of multi-layer sandwich structures with large thickness and cross-section, which are different from thin-walled composite materials widely applied in the aeronautical industry. However, sandwich composite materials used in marine structures have high susceptibility to impact event during in-service applications. The impact induced damage may seriously affect their mechanical performance and structural safety. Therefore, a comprehensive investigation in this paper on the failure mechanisms of composite sandwich panels with orthogonal woven GFRP facesheets and a PVC foam core layer is carried out with a series of single and repetitive low-velocity impact tests. The variations of impact force, dent depth, structural stiffness, failure modes, energy absorption and so on of composite sandwich panels against impact energy levels and impact numbers were explored. The results demonstrate that the delamination damage threshold at the first impact, the sudden drop of peak force and the slow descent process of impact force are the three typical characteristics of impact responses that corresponded to delamination initiation and fibre breakage of the upper panel, and compression damage of the core layer, respectively. The accumulated impact-induced damage has a significant negative effect on load-bearing and energy-absorption capabilities of composite sandwich panels. Moreover, an approximate theoretical analytical method is presented to solve the impact resistance of composite sandwich panels. The analytical results are compared well with experimental results. This research provides a detailed understanding of the damage mechanisms of composite sandwich panels under impact loadings and a guidance for impact resistant design of ship protective structures.</p></div>\",\"PeriodicalId\":50318,\"journal\":{\"name\":\"International Journal of Impact Engineering\",\"volume\":\"194 \",\"pages\":\"Article 105064\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Impact Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734743X2400188X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X2400188X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于船舶结构对高承载能力的独特设计要求,船舶工业中使用的复合材料逐渐发展成具有大厚度和大截面的多层夹层结构,这与航空工业中广泛使用的薄壁复合材料不同。然而,用于船舶结构的夹层复合材料在使用过程中极易受到冲击事件的影响。冲击引起的损伤可能会严重影响其机械性能和结构安全。因此,本文通过一系列单次和重复低速冲击试验,对正交编织 GFRP 面板和 PVC 泡沫芯层的复合夹层板的破坏机理进行了全面研究。研究了复合材料夹芯板的冲击力、凹痕深度、结构刚度、破坏模式、能量吸收等随冲击能级和冲击次数的变化情况。结果表明,首次冲击时的分层破坏阈值、冲击力峰值的突然下降和冲击力的缓慢下降过程是冲击响应的三个典型特征,分别对应于上层面板的分层引发和纤维断裂,以及芯层的压缩破坏。冲击引起的累积损伤对复合材料夹芯板的承载能力和能量吸收能力有显著的负面影响。此外,还提出了一种近似理论分析方法来求解复合材料夹芯板的抗冲击性能。分析结果与实验结果进行了很好的比较。这项研究有助于详细了解复合材料夹芯板在冲击载荷下的损坏机理,并为船舶防护结构的抗冲击设计提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental and analytical investigations on single and repetitive impact failure responses of composite sandwich panels with orthogonal woven GFRP facesheets and PVC foam cores

Due to the unique design requirements for high load-bearing capacity of ship structures, composite materials used in the marine industry are gradually being developed with the characteristics of multi-layer sandwich structures with large thickness and cross-section, which are different from thin-walled composite materials widely applied in the aeronautical industry. However, sandwich composite materials used in marine structures have high susceptibility to impact event during in-service applications. The impact induced damage may seriously affect their mechanical performance and structural safety. Therefore, a comprehensive investigation in this paper on the failure mechanisms of composite sandwich panels with orthogonal woven GFRP facesheets and a PVC foam core layer is carried out with a series of single and repetitive low-velocity impact tests. The variations of impact force, dent depth, structural stiffness, failure modes, energy absorption and so on of composite sandwich panels against impact energy levels and impact numbers were explored. The results demonstrate that the delamination damage threshold at the first impact, the sudden drop of peak force and the slow descent process of impact force are the three typical characteristics of impact responses that corresponded to delamination initiation and fibre breakage of the upper panel, and compression damage of the core layer, respectively. The accumulated impact-induced damage has a significant negative effect on load-bearing and energy-absorption capabilities of composite sandwich panels. Moreover, an approximate theoretical analytical method is presented to solve the impact resistance of composite sandwich panels. The analytical results are compared well with experimental results. This research provides a detailed understanding of the damage mechanisms of composite sandwich panels under impact loadings and a guidance for impact resistant design of ship protective structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Impact Engineering
International Journal of Impact Engineering 工程技术-工程:机械
CiteScore
8.70
自引率
13.70%
发文量
241
审稿时长
52 days
期刊介绍: The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them: -Behaviour and failure of structures and materials under impact and blast loading -Systems for protection and absorption of impact and blast loading -Terminal ballistics -Dynamic behaviour and failure of materials including plasticity and fracture -Stress waves -Structural crashworthiness -High-rate mechanical and forming processes -Impact, blast and high-rate loading/measurement techniques and their applications
期刊最新文献
Research on the evolution of state field and damage range of multiple source cloud explosions Effect of pre-shock on the expanding fracture behavior of 1045 steel cylindrical shell under internal explosive loading Editorial Board A comment on “Plasticity, ductile fracture and ballistic impact behavior of Ti-6Al-4V Alloy” by Wu et al. (2023), Int. J. Impact Eng. 174:104493 Tensile properties and constitutive modeling of Kevlar29 fibers: From filaments to bundles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1