使用不同介电材料研究基于质子材料的 T 型高消光比电吸收调制器

IF 3.1 3区 物理与天体物理 Q2 Engineering Optik Pub Date : 2024-08-08 DOI:10.1016/j.ijleo.2024.171985
Himanshu Ranjan Das , Haraprasad Mondal
{"title":"使用不同介电材料研究基于质子材料的 T 型高消光比电吸收调制器","authors":"Himanshu Ranjan Das ,&nbsp;Haraprasad Mondal","doi":"10.1016/j.ijleo.2024.171985","DOIUrl":null,"url":null,"abstract":"<div><p>The design and investigation of an electro-absorption modulator (EAM) based on a T-shaped plasmonic material is presented in this paper. Utilizing the finite element method (FEM), the properties of indium tin oxide (ITO) have been explored in terms of permittivity and refractive index. At an application wavelength of <span><math><mrow><mn>1</mn><mo>.</mo><mn>55</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, the ITO-based EAM’s extinction ratio (ER), insertion loss (IL), and figure of merit (FOM) have been calculated and observed to be 8.68 dB/<span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>, 0.028 dB/<span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>, and 310, respectively. Additionally, the EAM, utilizing vanadium dioxide (VO<sub>2</sub>) as the plasmonic material has shown a shift in the device’s performance matrices. Furthermore, the performance of the devices have been investigated based on four different dielectric materials such as hafnium dioxide (HfO<sub>2</sub>), silicon nitride (Si<sub>3</sub>N<sub>4</sub>), boron nitride (hBN), and silicon dioxide (SiO<sub>2</sub>). When compared to contemporary devices, the designed plasmonic material-based EAMs have shown better performance. The modulators under investigation have the potential to become a crucial components of future photonic circuits.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"313 ","pages":"Article 171985"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of plasmonic material-based T-shaped high extinction ratio electro-absorption modulator with different dielectric materials\",\"authors\":\"Himanshu Ranjan Das ,&nbsp;Haraprasad Mondal\",\"doi\":\"10.1016/j.ijleo.2024.171985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The design and investigation of an electro-absorption modulator (EAM) based on a T-shaped plasmonic material is presented in this paper. Utilizing the finite element method (FEM), the properties of indium tin oxide (ITO) have been explored in terms of permittivity and refractive index. At an application wavelength of <span><math><mrow><mn>1</mn><mo>.</mo><mn>55</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, the ITO-based EAM’s extinction ratio (ER), insertion loss (IL), and figure of merit (FOM) have been calculated and observed to be 8.68 dB/<span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>, 0.028 dB/<span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>, and 310, respectively. Additionally, the EAM, utilizing vanadium dioxide (VO<sub>2</sub>) as the plasmonic material has shown a shift in the device’s performance matrices. Furthermore, the performance of the devices have been investigated based on four different dielectric materials such as hafnium dioxide (HfO<sub>2</sub>), silicon nitride (Si<sub>3</sub>N<sub>4</sub>), boron nitride (hBN), and silicon dioxide (SiO<sub>2</sub>). When compared to contemporary devices, the designed plasmonic material-based EAMs have shown better performance. The modulators under investigation have the potential to become a crucial components of future photonic circuits.</p></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"313 \",\"pages\":\"Article 171985\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003040262400384X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003040262400384X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了基于 T 型等离子材料的电吸收调制器(EAM)的设计和研究。利用有限元法(FEM)探讨了氧化铟锡(ITO)在介电常数和折射率方面的特性。在应用波长为 1.55μm 时,计算并观察到基于 ITO 的 EAM 的消光比 (ER)、插入损耗 (IL) 和优点系数 (FOM) 分别为 8.68 dB/μm、0.028 dB/μm 和 310。此外,利用二氧化钒(VO2)作为质子材料的 EAM 显示了器件性能矩阵的变化。此外,还研究了基于四种不同介电材料(如二氧化铪(HfO2)、氮化硅(Si3N4)、氮化硼(hBN)和二氧化硅(SiO2))的器件性能。与当代设备相比,所设计的基于等离子材料的 EAM 表现出了更好的性能。研究中的调制器有望成为未来光子电路的重要组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of plasmonic material-based T-shaped high extinction ratio electro-absorption modulator with different dielectric materials

The design and investigation of an electro-absorption modulator (EAM) based on a T-shaped plasmonic material is presented in this paper. Utilizing the finite element method (FEM), the properties of indium tin oxide (ITO) have been explored in terms of permittivity and refractive index. At an application wavelength of 1.55μm, the ITO-based EAM’s extinction ratio (ER), insertion loss (IL), and figure of merit (FOM) have been calculated and observed to be 8.68 dB/μm, 0.028 dB/μm, and 310, respectively. Additionally, the EAM, utilizing vanadium dioxide (VO2) as the plasmonic material has shown a shift in the device’s performance matrices. Furthermore, the performance of the devices have been investigated based on four different dielectric materials such as hafnium dioxide (HfO2), silicon nitride (Si3N4), boron nitride (hBN), and silicon dioxide (SiO2). When compared to contemporary devices, the designed plasmonic material-based EAMs have shown better performance. The modulators under investigation have the potential to become a crucial components of future photonic circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
期刊最新文献
Optical solitons for generalised perturbed nonlinear Schrödinger model in the presence of dual-power law nonlinear medium Robust image encryption algorithm based on oscillated substitution and effective confusion module with novel chaining permutation and pixel mutation Transport of intensity phase retrieval in the presence of intensity variations and unknown boundary conditions Synthesis and characterization of InGaZnO nanocomposites: An insight of optical, dielectric, and magnetic properties Ultra-broadband mid-infrared supercontinuum generation in square lattice As2S3 chalcogenide photonic crystal fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1