随机软冲击系统的改进路径积分法

IF 2.8 3区 工程技术 Q2 MECHANICS International Journal of Non-Linear Mechanics Pub Date : 2024-08-08 DOI:10.1016/j.ijnonlinmec.2024.104866
{"title":"随机软冲击系统的改进路径积分法","authors":"","doi":"10.1016/j.ijnonlinmec.2024.104866","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an improved path integration method for a soft-impact system under stochastic excitation, which focuses on the response of the system on the impact surface. The system involves complex impact processes, including contact, deformation, recovery, and disengagement. To address the technical challenges posed by the system discontinuity at the moment of impact, we establish a mapping relation between impact events to solve the system response. Considering that the non-smooth moment of such systems exists only at the moment of contact with the impact surface, we chose to select the impact surface as a Poincaré cross-section. Two independent mappings were established to describe the transition of the oscillator from leaving the obstacle to the next contact with the obstacle, and from contacting the obstacle to leaving the obstacle. These two consecutive mappings were integrated into the plane to form a unified mapping. This method was employed to investigate the response probability density function of the system for autonomous and non-autonomous systems, respectively. The effectiveness of the methodology was validated by the use of Monte Carlo simulations, in addition to the discovery of the stochastic P-bifurcation phenomenon.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved path integration method for the stochastic soft-impact systems\",\"authors\":\"\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an improved path integration method for a soft-impact system under stochastic excitation, which focuses on the response of the system on the impact surface. The system involves complex impact processes, including contact, deformation, recovery, and disengagement. To address the technical challenges posed by the system discontinuity at the moment of impact, we establish a mapping relation between impact events to solve the system response. Considering that the non-smooth moment of such systems exists only at the moment of contact with the impact surface, we chose to select the impact surface as a Poincaré cross-section. Two independent mappings were established to describe the transition of the oscillator from leaving the obstacle to the next contact with the obstacle, and from contacting the obstacle to leaving the obstacle. These two consecutive mappings were integrated into the plane to form a unified mapping. This method was employed to investigate the response probability density function of the system for autonomous and non-autonomous systems, respectively. The effectiveness of the methodology was validated by the use of Monte Carlo simulations, in addition to the discovery of the stochastic P-bifurcation phenomenon.</p></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224002312\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002312","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对随机激励下的软撞击系统提出了一种改进的路径积分法,重点研究系统在撞击面上的响应。该系统涉及复杂的冲击过程,包括接触、变形、恢复和脱离。为了解决撞击瞬间系统不连续性带来的技术难题,我们建立了撞击事件之间的映射关系来解决系统响应问题。考虑到此类系统的非光滑力矩仅存在于与撞击面接触的瞬间,我们选择将撞击面选作波恩卡莱截面。我们建立了两个独立的映射来描述振荡器从离开障碍物到下一次接触障碍物的过渡,以及从接触障碍物到离开障碍物的过渡。这两个连续的映射被整合到平面上,形成一个统一的映射。利用这种方法分别研究了自主系统和非自主系统的响应概率密度函数。除了发现随机 P 分岔现象外,还利用蒙特卡罗模拟验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved path integration method for the stochastic soft-impact systems

This paper presents an improved path integration method for a soft-impact system under stochastic excitation, which focuses on the response of the system on the impact surface. The system involves complex impact processes, including contact, deformation, recovery, and disengagement. To address the technical challenges posed by the system discontinuity at the moment of impact, we establish a mapping relation between impact events to solve the system response. Considering that the non-smooth moment of such systems exists only at the moment of contact with the impact surface, we chose to select the impact surface as a Poincaré cross-section. Two independent mappings were established to describe the transition of the oscillator from leaving the obstacle to the next contact with the obstacle, and from contacting the obstacle to leaving the obstacle. These two consecutive mappings were integrated into the plane to form a unified mapping. This method was employed to investigate the response probability density function of the system for autonomous and non-autonomous systems, respectively. The effectiveness of the methodology was validated by the use of Monte Carlo simulations, in addition to the discovery of the stochastic P-bifurcation phenomenon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
期刊最新文献
Cascaded robust fixed-time terminal sliding mode control for uncertain cartpole systems with incremental nonlinear dynamic inversion Study on nonlinear relaxation properties of composite solid propellant Neural networks based surrogate modeling for efficient uncertainty quantification and calibration of MEMS accelerometers Static analysis using flexibility disassembly perturbation for material nonlinear problem with uncertainty Nonparametric identification of multi-degree-of-freedom nonlinear systems from partially measured responses under uncertain dynamic excitations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1