聚氨酯丙烯酸酯在改善纳米壳聚糖紫外线固化水凝胶纳米复合材料弹性中的作用

IF 5.45 Q1 Physics and Astronomy Nano-Structures & Nano-Objects Pub Date : 2024-08-13 DOI:10.1016/j.nanoso.2024.101293
{"title":"聚氨酯丙烯酸酯在改善纳米壳聚糖紫外线固化水凝胶纳米复合材料弹性中的作用","authors":"","doi":"10.1016/j.nanoso.2024.101293","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, hydrogels based on acrylic acid and acrylamide have been widely used for easy polymerization and biocompatibility. On the other hand, due to energy saving and high reaction speed, curing systems with ultraviolet radiation have been expanded, which are considered in this study for synthesizing hydrogels and the flexible agent of the hydrogel network. The strength and stability of hydrogels are among the problems that are considered in their construction, and the strength of the network against solvent absorption leads to their many uses. In this study, the use of urethane acrylate as a flexible network agent has been used in the construction of a UV-curable hydrogel. For this purpose, at first, urethane acrylate with polyethylene glycol, isophorone diisocyanate, and hydroxyethyl methacrylate was synthesized and, after characterization, used in the hydrogel structure. The hydrogels were synthesized using an equal ratio of acrylamide and acrylic acid, various percentages of nano-chitosan (3, 6, 9, and 11), photo-initiator, and water under ultraviolet radiation. The accuracy of the hydrogel chemical structure was confirmed by FTIR analysis. The swelling ability and fluidity behavior of prepared hydrogels were investigated by weight measurement test and rheometry. According to the rheological test results and swelling capability, the sample containing 6 % w/w nano-chitosan was selected as the optimum sample. Then, the effect of urethane acrylate with different amounts of 10, 20, and 30 % on the swelling ability and elasticity behavior of hydrogels was studied. The results showed that hydrogel containing 10 % by weight of urethane acrylate had a four-fold equilibrium swelling with preservation of the network's structure.</p></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":null,"pages":null},"PeriodicalIF":5.4500,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of urethane acrylate in improving the elasticity of nano chitosan UV-curable hydrogel nanocomposite\",\"authors\":\"\",\"doi\":\"10.1016/j.nanoso.2024.101293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, hydrogels based on acrylic acid and acrylamide have been widely used for easy polymerization and biocompatibility. On the other hand, due to energy saving and high reaction speed, curing systems with ultraviolet radiation have been expanded, which are considered in this study for synthesizing hydrogels and the flexible agent of the hydrogel network. The strength and stability of hydrogels are among the problems that are considered in their construction, and the strength of the network against solvent absorption leads to their many uses. In this study, the use of urethane acrylate as a flexible network agent has been used in the construction of a UV-curable hydrogel. For this purpose, at first, urethane acrylate with polyethylene glycol, isophorone diisocyanate, and hydroxyethyl methacrylate was synthesized and, after characterization, used in the hydrogel structure. The hydrogels were synthesized using an equal ratio of acrylamide and acrylic acid, various percentages of nano-chitosan (3, 6, 9, and 11), photo-initiator, and water under ultraviolet radiation. The accuracy of the hydrogel chemical structure was confirmed by FTIR analysis. The swelling ability and fluidity behavior of prepared hydrogels were investigated by weight measurement test and rheometry. According to the rheological test results and swelling capability, the sample containing 6 % w/w nano-chitosan was selected as the optimum sample. Then, the effect of urethane acrylate with different amounts of 10, 20, and 30 % on the swelling ability and elasticity behavior of hydrogels was studied. The results showed that hydrogel containing 10 % by weight of urethane acrylate had a four-fold equilibrium swelling with preservation of the network's structure.</p></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X2400204X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X2400204X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于丙烯酸和丙烯酰胺的水凝胶因其易于聚合和生物相容性而得到广泛应用。另一方面,由于节能和反应速度快,使用紫外线辐射的固化系统得到了扩展,本研究考虑使用紫外线辐射来合成水凝胶和水凝胶网络的柔性剂。水凝胶的强度和稳定性是其构建过程中需要考虑的问题之一,而网络的抗溶剂吸收强度则使其具有多种用途。在本研究中,使用聚氨酯丙烯酸酯作为柔性网络剂来构建紫外线固化水凝胶。为此,首先合成了聚乙二醇、异佛尔酮二异氰酸酯和甲基丙烯酸羟乙酯的聚氨酯丙烯酸酯,经表征后用于水凝胶结构。在紫外线辐射下,使用等比例的丙烯酰胺和丙烯酸、不同比例的纳米壳聚糖(3、6、9 和 11)、光引发剂和水合成了水凝胶。傅立叶变换红外光谱分析证实了水凝胶化学结构的准确性。通过重量测量试验和流变仪研究了制备的水凝胶的溶胀能力和流动性。根据流变测试结果和溶胀能力,选择含 6 % w/w 纳米壳聚糖的样品为最佳样品。然后,研究了不同含量(10%、20% 和 30%)的聚氨酯丙烯酸酯对水凝胶溶胀能力和弹性行为的影响。结果表明,含 10% (重量百分比)聚氨酯丙烯酸酯的水凝胶具有四倍的平衡溶胀性,并保持了网络结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of urethane acrylate in improving the elasticity of nano chitosan UV-curable hydrogel nanocomposite

In recent years, hydrogels based on acrylic acid and acrylamide have been widely used for easy polymerization and biocompatibility. On the other hand, due to energy saving and high reaction speed, curing systems with ultraviolet radiation have been expanded, which are considered in this study for synthesizing hydrogels and the flexible agent of the hydrogel network. The strength and stability of hydrogels are among the problems that are considered in their construction, and the strength of the network against solvent absorption leads to their many uses. In this study, the use of urethane acrylate as a flexible network agent has been used in the construction of a UV-curable hydrogel. For this purpose, at first, urethane acrylate with polyethylene glycol, isophorone diisocyanate, and hydroxyethyl methacrylate was synthesized and, after characterization, used in the hydrogel structure. The hydrogels were synthesized using an equal ratio of acrylamide and acrylic acid, various percentages of nano-chitosan (3, 6, 9, and 11), photo-initiator, and water under ultraviolet radiation. The accuracy of the hydrogel chemical structure was confirmed by FTIR analysis. The swelling ability and fluidity behavior of prepared hydrogels were investigated by weight measurement test and rheometry. According to the rheological test results and swelling capability, the sample containing 6 % w/w nano-chitosan was selected as the optimum sample. Then, the effect of urethane acrylate with different amounts of 10, 20, and 30 % on the swelling ability and elasticity behavior of hydrogels was studied. The results showed that hydrogel containing 10 % by weight of urethane acrylate had a four-fold equilibrium swelling with preservation of the network's structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
期刊最新文献
A novel natural reducing agent for the preparation of cerium oxide nanoparticles based on the saffron by-product: Characterization, antioxidant and antibacterial activity for nutritional applications Microwave-assisted synthesis of copper oxide nanoparticles using an Andrographis paniculata leaf extract: Characterization and multifunctional biological activities Evaluation of self-assembling properties of paclitaxel-biotin conjugates Effects of prescribed surface temperature and heat flux with electrical conductivity via microbial chemotaxis to enhance nanoparticle Functionalized conducting polymers in photocatalysis and opportunities for artificial intelligence applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1