{"title":"利用多再生能源系统和人工智能减少碳排放的新方法","authors":"","doi":"10.1016/j.scs.2024.105721","DOIUrl":null,"url":null,"abstract":"<div><p>Microgrid cost management is a significant difficulty because the energy generated by microgrids is typically derived from a variety of renewable and non-renewable sources. Furthermore, in order to meet the requirements of freed energy markets and secure load demand, a link between the microgrid and the national grid is always preferred. For all of these reasons, in order to minimize operating expenses, it is imperative to design a smart energy management unit to regulate various energy resources inside the microgrid. In this study, a smart unit idea for multi-source microgrid operation and cost management is presented. The proposed unit utilizes the Improved Artificial Rabbits Optimization Algorithm (IAROA) which is used to optimize the cost of operation based on current load demand, energy prices and generation capacities. Also, a comparison between the optimization outcomes obtained results is implemented using Honey Badger Algorithm (HBA), and Whale Optimization Algorithm (WOA). The results prove the applicability and feasibility of the proposed method for the demand management system in SMG. The price after applying HBA is 6244.5783 (ID). But after applying the Whale Optimization Algorithm, the cost is found 4283.9755 (ID), and after applying the Artificial Rabbits Optimization Algorithm, the cost is found 1227.4482 (ID). By comparing the proposed method with conventional method, the whale optimization algorithm saved 31.396 % per day, and the proposed artificial rabbit's optimization algorithm saved 80.3437 % per day. From the obtained results the proposed algorithm gives superior performance.</p></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2210670724005468/pdfft?md5=8045ffbdcc50abbcfa29f7a7b3ba6226&pid=1-s2.0-S2210670724005468-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A new methodology for reducing carbon emissions using multi-renewable energy systems and artificial intelligence\",\"authors\":\"\",\"doi\":\"10.1016/j.scs.2024.105721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microgrid cost management is a significant difficulty because the energy generated by microgrids is typically derived from a variety of renewable and non-renewable sources. Furthermore, in order to meet the requirements of freed energy markets and secure load demand, a link between the microgrid and the national grid is always preferred. For all of these reasons, in order to minimize operating expenses, it is imperative to design a smart energy management unit to regulate various energy resources inside the microgrid. In this study, a smart unit idea for multi-source microgrid operation and cost management is presented. The proposed unit utilizes the Improved Artificial Rabbits Optimization Algorithm (IAROA) which is used to optimize the cost of operation based on current load demand, energy prices and generation capacities. Also, a comparison between the optimization outcomes obtained results is implemented using Honey Badger Algorithm (HBA), and Whale Optimization Algorithm (WOA). The results prove the applicability and feasibility of the proposed method for the demand management system in SMG. The price after applying HBA is 6244.5783 (ID). But after applying the Whale Optimization Algorithm, the cost is found 4283.9755 (ID), and after applying the Artificial Rabbits Optimization Algorithm, the cost is found 1227.4482 (ID). By comparing the proposed method with conventional method, the whale optimization algorithm saved 31.396 % per day, and the proposed artificial rabbit's optimization algorithm saved 80.3437 % per day. From the obtained results the proposed algorithm gives superior performance.</p></div>\",\"PeriodicalId\":48659,\"journal\":{\"name\":\"Sustainable Cities and Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2210670724005468/pdfft?md5=8045ffbdcc50abbcfa29f7a7b3ba6226&pid=1-s2.0-S2210670724005468-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Cities and Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210670724005468\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724005468","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A new methodology for reducing carbon emissions using multi-renewable energy systems and artificial intelligence
Microgrid cost management is a significant difficulty because the energy generated by microgrids is typically derived from a variety of renewable and non-renewable sources. Furthermore, in order to meet the requirements of freed energy markets and secure load demand, a link between the microgrid and the national grid is always preferred. For all of these reasons, in order to minimize operating expenses, it is imperative to design a smart energy management unit to regulate various energy resources inside the microgrid. In this study, a smart unit idea for multi-source microgrid operation and cost management is presented. The proposed unit utilizes the Improved Artificial Rabbits Optimization Algorithm (IAROA) which is used to optimize the cost of operation based on current load demand, energy prices and generation capacities. Also, a comparison between the optimization outcomes obtained results is implemented using Honey Badger Algorithm (HBA), and Whale Optimization Algorithm (WOA). The results prove the applicability and feasibility of the proposed method for the demand management system in SMG. The price after applying HBA is 6244.5783 (ID). But after applying the Whale Optimization Algorithm, the cost is found 4283.9755 (ID), and after applying the Artificial Rabbits Optimization Algorithm, the cost is found 1227.4482 (ID). By comparing the proposed method with conventional method, the whale optimization algorithm saved 31.396 % per day, and the proposed artificial rabbit's optimization algorithm saved 80.3437 % per day. From the obtained results the proposed algorithm gives superior performance.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;