Hong Liu, Junxin Chen, Jin Hu, Jiajun Song, Peng Lin
{"title":"用于无标记 DNA 感测的高性能电解质门控非晶 InGaZnO 场效应晶体管","authors":"Hong Liu, Junxin Chen, Jin Hu, Jiajun Song, Peng Lin","doi":"10.1016/j.bioelechem.2024.108794","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate, convenient, label-free, and cost-effective biomolecules detection platforms are currently in high demand. In this study, we showcased the utilization of electrolyte-gated InGaZnO field-effect transistors (IGZO FETs) featuring a large on-off current ratio of over 10<sup>6</sup> and a low subthreshold slope of 78.5 mV/dec. In the DNA biosensor, the modification of target DNA changed the effective gate voltage of IGZO FETs, enabling an impressive low detection limit of 0.1 pM and a wide linear detection range from 0.1 pM to 1 μM. This label-free detection method also exhibits high selectivity, allowing for the discrimination of single-base mismatch. Furthermore, the reuse of gate electrodes and channel films offers cost-saving benefits and simplifies device fabrication processes. The electrolyte-gated IGZO FET biosensor presented in this study shows great promise for achieving low-cost and highly sensitive detection of various biomolecules.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"160 ","pages":"Article 108794"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance electrolyte-gated amorphous InGaZnO field-effect transistor for label-free DNA sensing\",\"authors\":\"Hong Liu, Junxin Chen, Jin Hu, Jiajun Song, Peng Lin\",\"doi\":\"10.1016/j.bioelechem.2024.108794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate, convenient, label-free, and cost-effective biomolecules detection platforms are currently in high demand. In this study, we showcased the utilization of electrolyte-gated InGaZnO field-effect transistors (IGZO FETs) featuring a large on-off current ratio of over 10<sup>6</sup> and a low subthreshold slope of 78.5 mV/dec. In the DNA biosensor, the modification of target DNA changed the effective gate voltage of IGZO FETs, enabling an impressive low detection limit of 0.1 pM and a wide linear detection range from 0.1 pM to 1 μM. This label-free detection method also exhibits high selectivity, allowing for the discrimination of single-base mismatch. Furthermore, the reuse of gate electrodes and channel films offers cost-saving benefits and simplifies device fabrication processes. The electrolyte-gated IGZO FET biosensor presented in this study shows great promise for achieving low-cost and highly sensitive detection of various biomolecules.</p></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"160 \",\"pages\":\"Article 108794\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539424001567\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001567","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
目前,准确、便捷、无标记且经济高效的生物大分子检测平台需求量很大。在这项研究中,我们展示了电解质门控 InGaZnO 场效应晶体管(IGZO FET)的应用,它具有超过 106 的大导通电流比和 78.5 mV/dec 的低亚阈值斜率。在 DNA 生物传感器中,对目标 DNA 的修饰改变了 IGZO 场效应晶体管的有效栅极电压,从而实现了令人印象深刻的 0.1 pM 低检测限和从 0.1 pM 到 1 μM 的宽线性检测范围。这种无标记检测方法还具有很高的选择性,可以区分单碱基错配。此外,重复使用栅电极和沟道薄膜还能节省成本,简化器件制造工艺。本研究提出的电解质门控 IGZO FET 生物传感器在实现低成本、高灵敏度地检测各种生物分子方面大有可为。
High-performance electrolyte-gated amorphous InGaZnO field-effect transistor for label-free DNA sensing
Accurate, convenient, label-free, and cost-effective biomolecules detection platforms are currently in high demand. In this study, we showcased the utilization of electrolyte-gated InGaZnO field-effect transistors (IGZO FETs) featuring a large on-off current ratio of over 106 and a low subthreshold slope of 78.5 mV/dec. In the DNA biosensor, the modification of target DNA changed the effective gate voltage of IGZO FETs, enabling an impressive low detection limit of 0.1 pM and a wide linear detection range from 0.1 pM to 1 μM. This label-free detection method also exhibits high selectivity, allowing for the discrimination of single-base mismatch. Furthermore, the reuse of gate electrodes and channel films offers cost-saving benefits and simplifies device fabrication processes. The electrolyte-gated IGZO FET biosensor presented in this study shows great promise for achieving low-cost and highly sensitive detection of various biomolecules.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.