用于检测氰化物的高灵敏度比色和荧光传感器

IF 4.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Photochemistry and Photobiology A-chemistry Pub Date : 2024-08-13 DOI:10.1016/j.jphotochem.2024.115957
{"title":"用于检测氰化物的高灵敏度比色和荧光传感器","authors":"","doi":"10.1016/j.jphotochem.2024.115957","DOIUrl":null,"url":null,"abstract":"<div><p>Certain anions play a vital role in metabolic reactions in our body, but the cyanide ion is highly toxic and poisonous to humans, animals, and the environment even at extremely low concentrations. To detect CN−ions, a highly sensitive electron donor-π-acceptor molecular system (IC) was designed based on the carbazole electron donor and 1,3-indanedione electron acceptor. The IC molecular probe was synthesized through simple organic transformations with good yields and characterized by all spectroscopic methods, including single-crystal X-ray diffraction. The IC probe molecule absorbs in the UV–visible region (200–550 nm), and fluorescence emission encompasses 400–750 nm with LE and CT emission bands. A systematic study suggests that the addition of cyanide ions caused both longer wavelength absorption bands and CT fluorescence emission intensity to decrease. Cyanide ion detection can be visualized with the naked eye, where the yellow color of the IC probe solution changes to colorless upon adding cyanide ion solution. Both UV–visible and fluorescence emission spectral changes with the addition of cyanide ions are attributed to the nucleophilic addition of cyanide at the vinylic carbon, which is confirmed by the <sup>1</sup>H NMR, HRMS and fluorescence lifetime studies. The cyanide ion detection limit of the IC has been estimated to be 0.43 µM, far below the WHO permissible limit for cyanide ion concentration in potable water, thus broadening the utility of the IC probe in detecting cyanide in Tapioca. A prototype TLC testing strip has been fabricated for the qualitative determination of cyanide in THF/water medium.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S101060302400501X/pdfft?md5=dbe80a1a1409eeae8ff8e31eff03d21d&pid=1-s2.0-S101060302400501X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A highly sensitive colorimetric and fluorometric sensor for the detection of cyanide\",\"authors\":\"\",\"doi\":\"10.1016/j.jphotochem.2024.115957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Certain anions play a vital role in metabolic reactions in our body, but the cyanide ion is highly toxic and poisonous to humans, animals, and the environment even at extremely low concentrations. To detect CN−ions, a highly sensitive electron donor-π-acceptor molecular system (IC) was designed based on the carbazole electron donor and 1,3-indanedione electron acceptor. The IC molecular probe was synthesized through simple organic transformations with good yields and characterized by all spectroscopic methods, including single-crystal X-ray diffraction. The IC probe molecule absorbs in the UV–visible region (200–550 nm), and fluorescence emission encompasses 400–750 nm with LE and CT emission bands. A systematic study suggests that the addition of cyanide ions caused both longer wavelength absorption bands and CT fluorescence emission intensity to decrease. Cyanide ion detection can be visualized with the naked eye, where the yellow color of the IC probe solution changes to colorless upon adding cyanide ion solution. Both UV–visible and fluorescence emission spectral changes with the addition of cyanide ions are attributed to the nucleophilic addition of cyanide at the vinylic carbon, which is confirmed by the <sup>1</sup>H NMR, HRMS and fluorescence lifetime studies. The cyanide ion detection limit of the IC has been estimated to be 0.43 µM, far below the WHO permissible limit for cyanide ion concentration in potable water, thus broadening the utility of the IC probe in detecting cyanide in Tapioca. A prototype TLC testing strip has been fabricated for the qualitative determination of cyanide in THF/water medium.</p></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S101060302400501X/pdfft?md5=dbe80a1a1409eeae8ff8e31eff03d21d&pid=1-s2.0-S101060302400501X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S101060302400501X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S101060302400501X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

某些阴离子在人体内的新陈代谢反应中发挥着重要作用,但氰离子具有剧毒,即使浓度极低,也会对人类、动物和环境造成危害。为了检测氰离子,我们设计了一种基于咔唑电子供体和 1,3-indanedione 电子受体的高灵敏度电子供体-π-受体分子系统(IC)。IC 分子探针是通过简单的有机转化合成的,具有良好的产率,并通过包括单晶 X 射线衍射在内的所有光谱方法进行了表征。IC 探针分子在紫外-可见光区(200-550 nm)吸收,荧光发射波长为 400-750 nm,具有 LE 和 CT 发射带。系统研究表明,加入氰离子会导致长波长吸收带和 CT 荧光发射强度降低。氰离子检测可以用肉眼观察到,加入氰离子溶液后,IC 探针溶液的黄色会变成无色。紫外可见光谱和荧光发射光谱随着氰离子的加入而发生变化的原因是氰化物在乙烯基碳上的亲核加成,这一点已被 1H NMR、HRMS 和荧光寿命研究证实。据估计,集成电路的氰离子检测限为 0.43 µM,远远低于世界卫生组织规定的饮用水中氰离子浓度的允许限值,从而扩大了集成电路探针在检测木薯中氰化物方面的用途。TLC 检测条原型已制作完成,用于定性测定四氢呋喃/水介质中的氰化物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A highly sensitive colorimetric and fluorometric sensor for the detection of cyanide

Certain anions play a vital role in metabolic reactions in our body, but the cyanide ion is highly toxic and poisonous to humans, animals, and the environment even at extremely low concentrations. To detect CN−ions, a highly sensitive electron donor-π-acceptor molecular system (IC) was designed based on the carbazole electron donor and 1,3-indanedione electron acceptor. The IC molecular probe was synthesized through simple organic transformations with good yields and characterized by all spectroscopic methods, including single-crystal X-ray diffraction. The IC probe molecule absorbs in the UV–visible region (200–550 nm), and fluorescence emission encompasses 400–750 nm with LE and CT emission bands. A systematic study suggests that the addition of cyanide ions caused both longer wavelength absorption bands and CT fluorescence emission intensity to decrease. Cyanide ion detection can be visualized with the naked eye, where the yellow color of the IC probe solution changes to colorless upon adding cyanide ion solution. Both UV–visible and fluorescence emission spectral changes with the addition of cyanide ions are attributed to the nucleophilic addition of cyanide at the vinylic carbon, which is confirmed by the 1H NMR, HRMS and fluorescence lifetime studies. The cyanide ion detection limit of the IC has been estimated to be 0.43 µM, far below the WHO permissible limit for cyanide ion concentration in potable water, thus broadening the utility of the IC probe in detecting cyanide in Tapioca. A prototype TLC testing strip has been fabricated for the qualitative determination of cyanide in THF/water medium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
580
审稿时长
48 days
期刊介绍: JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds. All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor). The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.
期刊最新文献
Editorial Board Photoelectrodegradation and sensing of pentachlorophenol using In and Mn metalated porphyrins in the presence of TiO2 nanoparticles Three multifunctional difluoroboron fluorescent dyes with five member N-heterocyclic ring for mechanofluorochromic behaviors, the ink-free writing and latent fingerprints imaging The role of process parameters on photooxidative degradation of 2,4-D herbicide using TiO2 nanoparticles: Kinetic and mechanistic study Insight into solvation-regulated emission: Dissecting the switchable ESIPT/ESPT mechanisms in HNT molecule
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1