Jinlin Jia , Alice Catherine Hughes , Matheus Henrique Nunes , Erone Ghizoni Santos , Petri K.E. Pellikka , Leena Kalliovirta , James Mwang ombe , Eduardo Eiji Maeda
{"title":"肯尼亚山沿海拔梯度的森林结构和小气候模式","authors":"Jinlin Jia , Alice Catherine Hughes , Matheus Henrique Nunes , Erone Ghizoni Santos , Petri K.E. Pellikka , Leena Kalliovirta , James Mwang ombe , Eduardo Eiji Maeda","doi":"10.1016/j.agrformet.2024.110188","DOIUrl":null,"url":null,"abstract":"<div><p>Tropical mountain forests are important biodiversity hotspots, which host disproportionally high number of endemic species. However, the potential impacts of climate change in these areas are uncertain. A key factor contributing to this knowledge gap is that climatic conditions experienced by organisms inside tropical forests (i.e., microclimate) remain largely understudied. Due to the effects of topography and vegetation, the understory microclimate can differ substantially from free-air conditions (i.e., macroclimate). This study aimed at unveiling vegetation structural characteristics and microclimatic patterns along an elevational gradient in a highly diverse tropical mountain ecosystem (Mount Kenya), by combining hundreds of terrestrial laser scanning measurements with a two-year time-series of microclimate observations. Our results showed that macroclimate temperature and elevation contributed >90 % to the microclimate variability in our study area. The influence of vegetation and soil moisture in regulating temperature differed substantially between day and night, as well as in different periods of the year. The contribution of vegetation to microclimate variation during the day was two times higher than that during the night. Soil moisture had a cooling effect on microclimate temperature during daytime, while the opposite pattern was observed at night. These differences affected lapse rates, which showed a clearly seasonal fluctuation during diurnal periods but a relatively stable pattern in night periods. The diurnal temperature range was regulated by combined effects of vegetation structure, elevation, and soil moisture. Finally, we were able to detect subtle changes in forest structure caused by historical selective logging. These changes resulted in a legacy effect on microclimate, thus demonstrating that human-induced disturbances have long-lasting impacts on tropical mountain ecosystems. These results improve our understanding of the climatic conditions experienced by organisms inside highly diverse African mountain forests, as well as how these conditions are regulated by vegetation structure and environmental factors.</p></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168192324003010/pdfft?md5=9d3de5ec5664cfd2441d942eed0a9542&pid=1-s2.0-S0168192324003010-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Forest structural and microclimatic patterns along an elevational gradient in Mount Kenya\",\"authors\":\"Jinlin Jia , Alice Catherine Hughes , Matheus Henrique Nunes , Erone Ghizoni Santos , Petri K.E. Pellikka , Leena Kalliovirta , James Mwang ombe , Eduardo Eiji Maeda\",\"doi\":\"10.1016/j.agrformet.2024.110188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tropical mountain forests are important biodiversity hotspots, which host disproportionally high number of endemic species. However, the potential impacts of climate change in these areas are uncertain. A key factor contributing to this knowledge gap is that climatic conditions experienced by organisms inside tropical forests (i.e., microclimate) remain largely understudied. Due to the effects of topography and vegetation, the understory microclimate can differ substantially from free-air conditions (i.e., macroclimate). This study aimed at unveiling vegetation structural characteristics and microclimatic patterns along an elevational gradient in a highly diverse tropical mountain ecosystem (Mount Kenya), by combining hundreds of terrestrial laser scanning measurements with a two-year time-series of microclimate observations. Our results showed that macroclimate temperature and elevation contributed >90 % to the microclimate variability in our study area. The influence of vegetation and soil moisture in regulating temperature differed substantially between day and night, as well as in different periods of the year. The contribution of vegetation to microclimate variation during the day was two times higher than that during the night. Soil moisture had a cooling effect on microclimate temperature during daytime, while the opposite pattern was observed at night. These differences affected lapse rates, which showed a clearly seasonal fluctuation during diurnal periods but a relatively stable pattern in night periods. The diurnal temperature range was regulated by combined effects of vegetation structure, elevation, and soil moisture. Finally, we were able to detect subtle changes in forest structure caused by historical selective logging. These changes resulted in a legacy effect on microclimate, thus demonstrating that human-induced disturbances have long-lasting impacts on tropical mountain ecosystems. These results improve our understanding of the climatic conditions experienced by organisms inside highly diverse African mountain forests, as well as how these conditions are regulated by vegetation structure and environmental factors.</p></div>\",\"PeriodicalId\":50839,\"journal\":{\"name\":\"Agricultural and Forest Meteorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168192324003010/pdfft?md5=9d3de5ec5664cfd2441d942eed0a9542&pid=1-s2.0-S0168192324003010-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Forest Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168192324003010\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192324003010","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Forest structural and microclimatic patterns along an elevational gradient in Mount Kenya
Tropical mountain forests are important biodiversity hotspots, which host disproportionally high number of endemic species. However, the potential impacts of climate change in these areas are uncertain. A key factor contributing to this knowledge gap is that climatic conditions experienced by organisms inside tropical forests (i.e., microclimate) remain largely understudied. Due to the effects of topography and vegetation, the understory microclimate can differ substantially from free-air conditions (i.e., macroclimate). This study aimed at unveiling vegetation structural characteristics and microclimatic patterns along an elevational gradient in a highly diverse tropical mountain ecosystem (Mount Kenya), by combining hundreds of terrestrial laser scanning measurements with a two-year time-series of microclimate observations. Our results showed that macroclimate temperature and elevation contributed >90 % to the microclimate variability in our study area. The influence of vegetation and soil moisture in regulating temperature differed substantially between day and night, as well as in different periods of the year. The contribution of vegetation to microclimate variation during the day was two times higher than that during the night. Soil moisture had a cooling effect on microclimate temperature during daytime, while the opposite pattern was observed at night. These differences affected lapse rates, which showed a clearly seasonal fluctuation during diurnal periods but a relatively stable pattern in night periods. The diurnal temperature range was regulated by combined effects of vegetation structure, elevation, and soil moisture. Finally, we were able to detect subtle changes in forest structure caused by historical selective logging. These changes resulted in a legacy effect on microclimate, thus demonstrating that human-induced disturbances have long-lasting impacts on tropical mountain ecosystems. These results improve our understanding of the climatic conditions experienced by organisms inside highly diverse African mountain forests, as well as how these conditions are regulated by vegetation structure and environmental factors.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.