采暖季现代办公楼的过热问题和空气流速

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Indoor air Pub Date : 2024-08-14 DOI:10.1155/2024/9992937
Martin Kiil, Raimo Simson, Martin Thalfeldt, Jarek Kurnitski
{"title":"采暖季现代办公楼的过热问题和空气流速","authors":"Martin Kiil,&nbsp;Raimo Simson,&nbsp;Martin Thalfeldt,&nbsp;Jarek Kurnitski","doi":"10.1155/2024/9992937","DOIUrl":null,"url":null,"abstract":"<p>Proper design and operation of buildings are expected to result in optimal thermal comfort and energy performance at the same time. If occupants are not satisfied with thermal conditions, corrective actions by building managers and maintenance staff may lead to elevated room temperatures with evident energy penalties. Because of complicated technical systems and control logic, it is worth studying how well the design intent has been realised in new office buildings. In this study, thermal comfort was analysed by measurements of draught, room, and supply air temperature as well as with occupant questionnaire surveys in five modern office buildings. Both short- and long-term measurements were conducted to demonstrate problems in the operation and to find potential solutions for improvement. The results revealed an issue of excessive overheating during the heating season despite generally low air velocities. Radiant ceiling panels had the lowest velocities in both summer and winter, while buildings with active chilled beams showed the potential to meet Category II air velocity and temperature requirements. The building with thermally activated building systems experienced the most overheating during the heating season. Occupants were satisfied with the heating season temperatures of 23°C–25°C that can be attributed to lighter clothing (0.7 clo) instead of the standard 1.0 clo. Ventilation supply air and indoor temperature analyses indicate that elevated setpoints have been used to compensate for draught, resulting in overheating. As a measure of improvement to avoid overheating, we propose control curves for room temperature based on the outdoor running mean temperature and for supply air temperature based on the extract air temperature.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9992937","citationCount":"0","resultStr":"{\"title\":\"Overheating and Air Velocities in Modern Office Buildings During Heating Season\",\"authors\":\"Martin Kiil,&nbsp;Raimo Simson,&nbsp;Martin Thalfeldt,&nbsp;Jarek Kurnitski\",\"doi\":\"10.1155/2024/9992937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Proper design and operation of buildings are expected to result in optimal thermal comfort and energy performance at the same time. If occupants are not satisfied with thermal conditions, corrective actions by building managers and maintenance staff may lead to elevated room temperatures with evident energy penalties. Because of complicated technical systems and control logic, it is worth studying how well the design intent has been realised in new office buildings. In this study, thermal comfort was analysed by measurements of draught, room, and supply air temperature as well as with occupant questionnaire surveys in five modern office buildings. Both short- and long-term measurements were conducted to demonstrate problems in the operation and to find potential solutions for improvement. The results revealed an issue of excessive overheating during the heating season despite generally low air velocities. Radiant ceiling panels had the lowest velocities in both summer and winter, while buildings with active chilled beams showed the potential to meet Category II air velocity and temperature requirements. The building with thermally activated building systems experienced the most overheating during the heating season. Occupants were satisfied with the heating season temperatures of 23°C–25°C that can be attributed to lighter clothing (0.7 clo) instead of the standard 1.0 clo. Ventilation supply air and indoor temperature analyses indicate that elevated setpoints have been used to compensate for draught, resulting in overheating. As a measure of improvement to avoid overheating, we propose control curves for room temperature based on the outdoor running mean temperature and for supply air temperature based on the extract air temperature.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9992937\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/9992937\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9992937","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

建筑物的合理设计和运行可同时带来最佳的热舒适度和能源性能。如果用户对热环境不满意,楼宇管理者和维护人员的纠正措施可能会导致室内温度升高,从而造成明显的能源损失。由于技术系统和控制逻辑比较复杂,因此值得研究新建办公楼在多大程度上实现了设计意图。在这项研究中,通过对五座现代化办公楼的通风、室内和送风温度进行测量,以及对居住者进行问卷调查,对热舒适度进行了分析。通过短期和长期测量,可以发现运行中存在的问题,并找到潜在的改进方案。结果显示,尽管气流速度普遍较低,但在供暖季节仍存在过热问题。辐射天花板在夏季和冬季的气流速度都是最低的,而采用主动式冷梁的建筑则显示出满足二类气流速度和温度要求的潜力。采用热激活建筑系统的建筑在采暖季的过热程度最高。住户对采暖季 23°C-25°C 的温度感到满意,这可归因于较轻的衣物(0.7 披风),而不是标准的 1.0 披风。通风送风和室内温度分析表明,为了补偿气流而提高了设定点,导致过热。作为避免过热的改进措施,我们提出了基于室外运行平均温度的室温控制曲线和基于排风温度的送风温度控制曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overheating and Air Velocities in Modern Office Buildings During Heating Season

Proper design and operation of buildings are expected to result in optimal thermal comfort and energy performance at the same time. If occupants are not satisfied with thermal conditions, corrective actions by building managers and maintenance staff may lead to elevated room temperatures with evident energy penalties. Because of complicated technical systems and control logic, it is worth studying how well the design intent has been realised in new office buildings. In this study, thermal comfort was analysed by measurements of draught, room, and supply air temperature as well as with occupant questionnaire surveys in five modern office buildings. Both short- and long-term measurements were conducted to demonstrate problems in the operation and to find potential solutions for improvement. The results revealed an issue of excessive overheating during the heating season despite generally low air velocities. Radiant ceiling panels had the lowest velocities in both summer and winter, while buildings with active chilled beams showed the potential to meet Category II air velocity and temperature requirements. The building with thermally activated building systems experienced the most overheating during the heating season. Occupants were satisfied with the heating season temperatures of 23°C–25°C that can be attributed to lighter clothing (0.7 clo) instead of the standard 1.0 clo. Ventilation supply air and indoor temperature analyses indicate that elevated setpoints have been used to compensate for draught, resulting in overheating. As a measure of improvement to avoid overheating, we propose control curves for room temperature based on the outdoor running mean temperature and for supply air temperature based on the extract air temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
期刊最新文献
Comprehensive Computational Study on the Influences of Particle Size and Relative Humidity on Aerosol/Droplet Transmission in a Ventilated Room Under Stationary and Dynamic Conditions Impact of Cooking Methods on Indoor Air Quality: A Comparative Study of Particulate Matter (PM) and Volatile Organic Compound (VOC) Emissions Evaluation of Seasonal Variations of Human Subjective Responses in China’s Cold Climate Zone COVID-19 Infection Risk Assessment in a Kindergarten Utilizing Continuous Air Quality Monitoring Data Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1