Luca Borghero, Santiago Escudero, Joana Ortiz, Jaume Salom
{"title":"计算舒适度指数并应用舒适度模型预测体育中心的热感值","authors":"Luca Borghero, Santiago Escudero, Joana Ortiz, Jaume Salom","doi":"10.1155/2024/9142303","DOIUrl":null,"url":null,"abstract":"<p>Predicting the indoor thermal comfort of people while doing sports might pose challenges, as the combination of high metabolic rate, increased humidity of the space due to physical exercise, and the alternate of more and less intense tasks influence perception. This paper is aimed at comparing environmental data (temperature and relative humidity) and calculating comfort indexes (heat index) and two comfort models (Fanger’s predicted mean value and the adaptive thermal comfort model) with people’s perceptions of the environment. Indoor environmental data for the analysis were collected by monitoring several rooms in eight sports centres in a Mediterranean climate. The thermal sensation votes (TSVs) of the occupants were obtained through an online survey. A detailed explanation of the methodology of the monitoring, creation, and management of the survey and the tools used to analyse the data is provided. Results compare the relation between the TSV and the parameters or indexes calculated. Fanger’s predicted mean vote (PMV) model is not able to correctly predict people’s sensations, neither for low nor for high metabolic rates. Finally, the neutral temperature of the adaptive model for the studied conditions is calculated. Among the studied parameters and indices, temperature exhibits the strongest correlation with the thermal sensation of the occupants. However, occupants did not report a significant sensation regarding humidity in accordance with the objective conditions of the rooms. The heat index also did not show any significant correlation with the TSV. Nevertheless, across a wide range of conditions, including variations in metabolic activities, temperature, and relative humidity, the percentage of thermal dissatisfaction (indicated by “very hot” responses) remains consistently high. Notably, the temperature at which a peak in neutral sensation can be achieved is less than 21° for low metabolic rate activities.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9142303","citationCount":"0","resultStr":"{\"title\":\"Calculating Comfort Indexes and Applying Comfort Models to Predict Thermal Sensation Vote in Sports Centres\",\"authors\":\"Luca Borghero, Santiago Escudero, Joana Ortiz, Jaume Salom\",\"doi\":\"10.1155/2024/9142303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting the indoor thermal comfort of people while doing sports might pose challenges, as the combination of high metabolic rate, increased humidity of the space due to physical exercise, and the alternate of more and less intense tasks influence perception. This paper is aimed at comparing environmental data (temperature and relative humidity) and calculating comfort indexes (heat index) and two comfort models (Fanger’s predicted mean value and the adaptive thermal comfort model) with people’s perceptions of the environment. Indoor environmental data for the analysis were collected by monitoring several rooms in eight sports centres in a Mediterranean climate. The thermal sensation votes (TSVs) of the occupants were obtained through an online survey. A detailed explanation of the methodology of the monitoring, creation, and management of the survey and the tools used to analyse the data is provided. Results compare the relation between the TSV and the parameters or indexes calculated. Fanger’s predicted mean vote (PMV) model is not able to correctly predict people’s sensations, neither for low nor for high metabolic rates. Finally, the neutral temperature of the adaptive model for the studied conditions is calculated. Among the studied parameters and indices, temperature exhibits the strongest correlation with the thermal sensation of the occupants. However, occupants did not report a significant sensation regarding humidity in accordance with the objective conditions of the rooms. The heat index also did not show any significant correlation with the TSV. Nevertheless, across a wide range of conditions, including variations in metabolic activities, temperature, and relative humidity, the percentage of thermal dissatisfaction (indicated by “very hot” responses) remains consistently high. Notably, the temperature at which a peak in neutral sensation can be achieved is less than 21° for low metabolic rate activities.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9142303\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/9142303\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9142303","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Calculating Comfort Indexes and Applying Comfort Models to Predict Thermal Sensation Vote in Sports Centres
Predicting the indoor thermal comfort of people while doing sports might pose challenges, as the combination of high metabolic rate, increased humidity of the space due to physical exercise, and the alternate of more and less intense tasks influence perception. This paper is aimed at comparing environmental data (temperature and relative humidity) and calculating comfort indexes (heat index) and two comfort models (Fanger’s predicted mean value and the adaptive thermal comfort model) with people’s perceptions of the environment. Indoor environmental data for the analysis were collected by monitoring several rooms in eight sports centres in a Mediterranean climate. The thermal sensation votes (TSVs) of the occupants were obtained through an online survey. A detailed explanation of the methodology of the monitoring, creation, and management of the survey and the tools used to analyse the data is provided. Results compare the relation between the TSV and the parameters or indexes calculated. Fanger’s predicted mean vote (PMV) model is not able to correctly predict people’s sensations, neither for low nor for high metabolic rates. Finally, the neutral temperature of the adaptive model for the studied conditions is calculated. Among the studied parameters and indices, temperature exhibits the strongest correlation with the thermal sensation of the occupants. However, occupants did not report a significant sensation regarding humidity in accordance with the objective conditions of the rooms. The heat index also did not show any significant correlation with the TSV. Nevertheless, across a wide range of conditions, including variations in metabolic activities, temperature, and relative humidity, the percentage of thermal dissatisfaction (indicated by “very hot” responses) remains consistently high. Notably, the temperature at which a peak in neutral sensation can be achieved is less than 21° for low metabolic rate activities.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.