Jinyu Sun, Dongxu Li, Jie Zou, Shaofeng Zhu, Cong Xu, Yingping Zou, Zhimin Zhang, Hongmei Lu
{"title":"通过深度学习加速发现有机太阳能电池的受体材料","authors":"Jinyu Sun, Dongxu Li, Jie Zou, Shaofeng Zhu, Cong Xu, Yingping Zou, Zhimin Zhang, Hongmei Lu","doi":"10.1038/s41524-024-01367-7","DOIUrl":null,"url":null,"abstract":"<p>It is a time-consuming and costly process to develop affordable and high-performance organic photovoltaic materials. Computational methods are essential for accelerating the material discovery process by predicting power conversion efficiencies (PCE). In this study, we propose a deep learning-based framework (DeepAcceptor) to design and discover highly efficient small molecule acceptor materials. Specifically, an experimental dataset is constructed by collecting acceptor data from publications. Then, a deep learning-based model is customized to predict PCEs by applying graph representation learning to Bidirectional Encoder Representations from Transformers (BERT), with the atom, bond, and connection information in acceptor molecular structures as the input (abcBERT). The computational dataset derived from density functional theory (DFT) calculations and the experimental dataset from literature are used to pre-train and fine-tune the model, respectively. The abcBERT model outperforms other state-of-the-art models for the PCE prediction with MAE = 1.78 and <i>R</i><sup>2</sup> = 0.67 on the test set. A molecular generation and screening process is built to find new high-performance acceptors for PM6. Three discovered candidates are further validated by experiment, and the best PCE reaches 14.61%. The released user-friendly interface of DeepAcceptor greatly boosts the accessibility and efficiency of designing and discovering high-performance acceptors. Altogether, the DeepAcceptor framework with abcBERT is promising to predict the PCE and accelerate the discovery of high-performance acceptor materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"58 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating the discovery of acceptor materials for organic solar cells by deep learning\",\"authors\":\"Jinyu Sun, Dongxu Li, Jie Zou, Shaofeng Zhu, Cong Xu, Yingping Zou, Zhimin Zhang, Hongmei Lu\",\"doi\":\"10.1038/s41524-024-01367-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is a time-consuming and costly process to develop affordable and high-performance organic photovoltaic materials. Computational methods are essential for accelerating the material discovery process by predicting power conversion efficiencies (PCE). In this study, we propose a deep learning-based framework (DeepAcceptor) to design and discover highly efficient small molecule acceptor materials. Specifically, an experimental dataset is constructed by collecting acceptor data from publications. Then, a deep learning-based model is customized to predict PCEs by applying graph representation learning to Bidirectional Encoder Representations from Transformers (BERT), with the atom, bond, and connection information in acceptor molecular structures as the input (abcBERT). The computational dataset derived from density functional theory (DFT) calculations and the experimental dataset from literature are used to pre-train and fine-tune the model, respectively. The abcBERT model outperforms other state-of-the-art models for the PCE prediction with MAE = 1.78 and <i>R</i><sup>2</sup> = 0.67 on the test set. A molecular generation and screening process is built to find new high-performance acceptors for PM6. Three discovered candidates are further validated by experiment, and the best PCE reaches 14.61%. The released user-friendly interface of DeepAcceptor greatly boosts the accessibility and efficiency of designing and discovering high-performance acceptors. Altogether, the DeepAcceptor framework with abcBERT is promising to predict the PCE and accelerate the discovery of high-performance acceptor materials.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01367-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01367-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Accelerating the discovery of acceptor materials for organic solar cells by deep learning
It is a time-consuming and costly process to develop affordable and high-performance organic photovoltaic materials. Computational methods are essential for accelerating the material discovery process by predicting power conversion efficiencies (PCE). In this study, we propose a deep learning-based framework (DeepAcceptor) to design and discover highly efficient small molecule acceptor materials. Specifically, an experimental dataset is constructed by collecting acceptor data from publications. Then, a deep learning-based model is customized to predict PCEs by applying graph representation learning to Bidirectional Encoder Representations from Transformers (BERT), with the atom, bond, and connection information in acceptor molecular structures as the input (abcBERT). The computational dataset derived from density functional theory (DFT) calculations and the experimental dataset from literature are used to pre-train and fine-tune the model, respectively. The abcBERT model outperforms other state-of-the-art models for the PCE prediction with MAE = 1.78 and R2 = 0.67 on the test set. A molecular generation and screening process is built to find new high-performance acceptors for PM6. Three discovered candidates are further validated by experiment, and the best PCE reaches 14.61%. The released user-friendly interface of DeepAcceptor greatly boosts the accessibility and efficiency of designing and discovering high-performance acceptors. Altogether, the DeepAcceptor framework with abcBERT is promising to predict the PCE and accelerate the discovery of high-performance acceptor materials.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.