利用对困离子量子计算机的测量增强电子对近似性

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-08-13 DOI:10.1038/s41534-024-00871-4
Luning Zhao, Qingfeng Wang, Joshua J. Goings, Kyujin Shin, Woomin Kyoung, Seunghyo Noh, Young Min Rhee, Kyungmin Kim
{"title":"利用对困离子量子计算机的测量增强电子对近似性","authors":"Luning Zhao, Qingfeng Wang, Joshua J. Goings, Kyujin Shin, Woomin Kyoung, Seunghyo Noh, Young Min Rhee, Kyungmin Kim","doi":"10.1038/s41534-024-00871-4","DOIUrl":null,"url":null,"abstract":"<p>The electron pair approximation offers an efficient variational quantum eigensolver (VQE) approach for chemistry simulations on quantum computers. With the number of entangling gates scaling quadratically with system size and a constant measurement overhead, the orbital optimized unitary pair coupled cluster double (oo-upCCD) ansatz strikes a balance between accuracy and efficiency. However, the electron pair approximation prevents the method from achieving quantitative accuracy. To improve it, we explore the theory of second order perturbation (PT2) correction to oo-upCCD. PT2 accounts for the missing broken-pair contributions in oo-upCCD, while retaining its efficiencies. For molecular bond stretching and chemical reactions, the method significantly improves the predicted energy accuracy, reducing oo-upCCD’s error by up to 90%. On IonQ’s quantum computers, we find that the PT2 energy correction is highly noise-resilient. The predicted VQE-PT2 reaction energies are in excellent agreement with noise-free simulators after applying simple error mitigations solely on the VQE energies.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the electron pair approximation with measurements on trapped-ion quantum computers\",\"authors\":\"Luning Zhao, Qingfeng Wang, Joshua J. Goings, Kyujin Shin, Woomin Kyoung, Seunghyo Noh, Young Min Rhee, Kyungmin Kim\",\"doi\":\"10.1038/s41534-024-00871-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electron pair approximation offers an efficient variational quantum eigensolver (VQE) approach for chemistry simulations on quantum computers. With the number of entangling gates scaling quadratically with system size and a constant measurement overhead, the orbital optimized unitary pair coupled cluster double (oo-upCCD) ansatz strikes a balance between accuracy and efficiency. However, the electron pair approximation prevents the method from achieving quantitative accuracy. To improve it, we explore the theory of second order perturbation (PT2) correction to oo-upCCD. PT2 accounts for the missing broken-pair contributions in oo-upCCD, while retaining its efficiencies. For molecular bond stretching and chemical reactions, the method significantly improves the predicted energy accuracy, reducing oo-upCCD’s error by up to 90%. On IonQ’s quantum computers, we find that the PT2 energy correction is highly noise-resilient. The predicted VQE-PT2 reaction energies are in excellent agreement with noise-free simulators after applying simple error mitigations solely on the VQE energies.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00871-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00871-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

电子对近似为量子计算机上的化学模拟提供了一种高效的变分量子求解器(VQE)方法。由于纠缠门的数量与系统大小成二次方比例,且测量开销恒定,轨道优化的单元对耦合簇双(oo-upCCD)公式在准确性和效率之间取得了平衡。然而,电子对近似使得该方法无法达到定量精度。为了改进它,我们探索了对 oo-upCCD 的二阶扰动(PT2)修正理论。PT2 考虑了 oo-upCCD 中缺失的断对贡献,同时保留了其效率。对于分子键伸展和化学反应,该方法显著提高了预测能量的准确性,将 oo-upCCD 的误差减少了 90%。在 IonQ 的量子计算机上,我们发现 PT2 能量修正具有很强的抗噪能力。仅在 VQE 能量上应用简单的误差缓解后,预测的 VQE-PT2 反应能量与无噪声模拟器非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the electron pair approximation with measurements on trapped-ion quantum computers

The electron pair approximation offers an efficient variational quantum eigensolver (VQE) approach for chemistry simulations on quantum computers. With the number of entangling gates scaling quadratically with system size and a constant measurement overhead, the orbital optimized unitary pair coupled cluster double (oo-upCCD) ansatz strikes a balance between accuracy and efficiency. However, the electron pair approximation prevents the method from achieving quantitative accuracy. To improve it, we explore the theory of second order perturbation (PT2) correction to oo-upCCD. PT2 accounts for the missing broken-pair contributions in oo-upCCD, while retaining its efficiencies. For molecular bond stretching and chemical reactions, the method significantly improves the predicted energy accuracy, reducing oo-upCCD’s error by up to 90%. On IonQ’s quantum computers, we find that the PT2 energy correction is highly noise-resilient. The predicted VQE-PT2 reaction energies are in excellent agreement with noise-free simulators after applying simple error mitigations solely on the VQE energies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Scaling whole-chip QAOA for higher-order ising spin glass models on heavy-hex graphs Classification of dynamical Lie algebras of 2-local spin systems on linear, circular and fully connected topologies Time-optimal control of a solid-state spin amidst dynamical quantum wind Qubit teleportation between a memory-compatible photonic time-bin qubit and a solid-state quantum network node An architecture for two-qubit encoding in neutral ytterbium-171 atoms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1