{"title":"负载三七皂苷的三维打印支架可促进兔颈动脉再内皮化并减轻局部炎症。","authors":"Chaojie Tang, Yihong Shen, Yazhi Xing, Yufan Wu, Mianmian Zhang, He Zhang, Shuo Zhao, Zhiguo Zhou, Yongning Sun, Xiumei Mo, Wu Wang","doi":"10.1021/acsbiomaterials.4c00925","DOIUrl":null,"url":null,"abstract":"<p><p>Endovascular treatment (EVT) using stents has become the primary option for severe cerebrovascular stenosis. However, considerable challenges remain to be addressed, such as in-stent restenosis (ISR) and late thrombosis. Many modified stents have been developed to inhibit the hyperproliferation of vascular smooth muscle cells (SMCs) and protect vascular endothelial cells (VECs), thereby reducing such complications. Some modified stents, such as those infused with rapamycin, have improved in preventing acute thrombosis. However, ISR and late thrombosis, which are long-term complications, remain unavoidable. <i>Panax notoginseng</i> <i>saponin</i> (PNS), a traditional Chinese medicine consisting of various compounds, is beneficial in promoting the proliferation and migration of VECs and inhibiting the proliferation of SMCs. Herein, a 3D-printed polycaprolactone (PCL) stent loaded with PNS (PNS-PCL stent) was developed based on a previous study. <i>In vitro</i> studies confirmed that PNS promotes the migration and proliferation of VECs, which were damaged, by increasing the expression levels of microRNA-126, p-AKT, and endothelial nitric oxide synthase. <i>In vivo</i>, the PNS-PCL stents maintained the patency of the carotid artery in rabbits for up to three months, outperforming the PCL stents. The PNS-PCL stents may present a new solution for the EVT of cerebrovascular atherosclerotic stenosis in the future.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-Printed Stents Loaded with <i>Panax notoginseng</i> Saponin for Promoting Re-endothelialization and Reducing Local Inflammation in the Carotid Artery of Rabbits.\",\"authors\":\"Chaojie Tang, Yihong Shen, Yazhi Xing, Yufan Wu, Mianmian Zhang, He Zhang, Shuo Zhao, Zhiguo Zhou, Yongning Sun, Xiumei Mo, Wu Wang\",\"doi\":\"10.1021/acsbiomaterials.4c00925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endovascular treatment (EVT) using stents has become the primary option for severe cerebrovascular stenosis. However, considerable challenges remain to be addressed, such as in-stent restenosis (ISR) and late thrombosis. Many modified stents have been developed to inhibit the hyperproliferation of vascular smooth muscle cells (SMCs) and protect vascular endothelial cells (VECs), thereby reducing such complications. Some modified stents, such as those infused with rapamycin, have improved in preventing acute thrombosis. However, ISR and late thrombosis, which are long-term complications, remain unavoidable. <i>Panax notoginseng</i> <i>saponin</i> (PNS), a traditional Chinese medicine consisting of various compounds, is beneficial in promoting the proliferation and migration of VECs and inhibiting the proliferation of SMCs. Herein, a 3D-printed polycaprolactone (PCL) stent loaded with PNS (PNS-PCL stent) was developed based on a previous study. <i>In vitro</i> studies confirmed that PNS promotes the migration and proliferation of VECs, which were damaged, by increasing the expression levels of microRNA-126, p-AKT, and endothelial nitric oxide synthase. <i>In vivo</i>, the PNS-PCL stents maintained the patency of the carotid artery in rabbits for up to three months, outperforming the PCL stents. The PNS-PCL stents may present a new solution for the EVT of cerebrovascular atherosclerotic stenosis in the future.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c00925\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c00925","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
3D-Printed Stents Loaded with Panax notoginseng Saponin for Promoting Re-endothelialization and Reducing Local Inflammation in the Carotid Artery of Rabbits.
Endovascular treatment (EVT) using stents has become the primary option for severe cerebrovascular stenosis. However, considerable challenges remain to be addressed, such as in-stent restenosis (ISR) and late thrombosis. Many modified stents have been developed to inhibit the hyperproliferation of vascular smooth muscle cells (SMCs) and protect vascular endothelial cells (VECs), thereby reducing such complications. Some modified stents, such as those infused with rapamycin, have improved in preventing acute thrombosis. However, ISR and late thrombosis, which are long-term complications, remain unavoidable. Panax notoginsengsaponin (PNS), a traditional Chinese medicine consisting of various compounds, is beneficial in promoting the proliferation and migration of VECs and inhibiting the proliferation of SMCs. Herein, a 3D-printed polycaprolactone (PCL) stent loaded with PNS (PNS-PCL stent) was developed based on a previous study. In vitro studies confirmed that PNS promotes the migration and proliferation of VECs, which were damaged, by increasing the expression levels of microRNA-126, p-AKT, and endothelial nitric oxide synthase. In vivo, the PNS-PCL stents maintained the patency of the carotid artery in rabbits for up to three months, outperforming the PCL stents. The PNS-PCL stents may present a new solution for the EVT of cerebrovascular atherosclerotic stenosis in the future.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture