在丝裂霉素生物合成过程中,后mitosane修饰酶MitM识别底物的结构基础。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-09-03 Epub Date: 2024-08-14 DOI:10.1021/acs.biochem.4c00330
Danna Dong, Mingyu Xia, Sili Wang, Pengfei Fang, Wen Liu
{"title":"在丝裂霉素生物合成过程中,后mitosane修饰酶MitM识别底物的结构基础。","authors":"Danna Dong, Mingyu Xia, Sili Wang, Pengfei Fang, Wen Liu","doi":"10.1021/acs.biochem.4c00330","DOIUrl":null,"url":null,"abstract":"<p><p>Mitomycins make up a class of natural molecules produced by <i>Streptomyces</i> with strong antibacterial and antitumor activities. MitM is a key postmitosane modification enzyme involved in mitomycin biosynthesis in <i>Streptomyces caespitosus</i>. This protein was previously suggested to catalyze the aziridinium methylation of mitomycin A and the mitomycin intermediate 9a-demethyl-mitomycin A as an <i>N</i>-methyltransferase. The structural basis for MitM to recognize cofactor <i>S</i>-adenosyl-l-methionine (SAM) and substrate mitomycin A is unknown. Here, we determined the crystal structures of <i>apo</i>-MitM and MitM-mitomycin A-<i>S</i>-adenosylhomocysteine (SAH) ternary complexes with resolutions of 2.23 and 2.80 Å, respectively. We found that MitM adopts a class I SAM-dependent methyltransferase fold and forms a homodimer in solution. Conformational changes in a series of residues involved in the formation of active pockets assist MitM in binding SAH and mitomycin A. In particular, the <sub>28</sub>ALGAASLGE<sub>36</sub> loop changes most significantly. When mitomycin A binds, the bending direction of this loop is reversed, changing the entrance of the active site from open to closed. This study provides structural insights into MitM's involvement in the postmitosane stage of mitomycin biosynthesis and provides a template for the engineering of methyltransferases.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Basis of Substrate Recognition by the Postmitosane Modification Enzyme MitM in Mitomycin Biosynthesis.\",\"authors\":\"Danna Dong, Mingyu Xia, Sili Wang, Pengfei Fang, Wen Liu\",\"doi\":\"10.1021/acs.biochem.4c00330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitomycins make up a class of natural molecules produced by <i>Streptomyces</i> with strong antibacterial and antitumor activities. MitM is a key postmitosane modification enzyme involved in mitomycin biosynthesis in <i>Streptomyces caespitosus</i>. This protein was previously suggested to catalyze the aziridinium methylation of mitomycin A and the mitomycin intermediate 9a-demethyl-mitomycin A as an <i>N</i>-methyltransferase. The structural basis for MitM to recognize cofactor <i>S</i>-adenosyl-l-methionine (SAM) and substrate mitomycin A is unknown. Here, we determined the crystal structures of <i>apo</i>-MitM and MitM-mitomycin A-<i>S</i>-adenosylhomocysteine (SAH) ternary complexes with resolutions of 2.23 and 2.80 Å, respectively. We found that MitM adopts a class I SAM-dependent methyltransferase fold and forms a homodimer in solution. Conformational changes in a series of residues involved in the formation of active pockets assist MitM in binding SAH and mitomycin A. In particular, the <sub>28</sub>ALGAASLGE<sub>36</sub> loop changes most significantly. When mitomycin A binds, the bending direction of this loop is reversed, changing the entrance of the active site from open to closed. This study provides structural insights into MitM's involvement in the postmitosane stage of mitomycin biosynthesis and provides a template for the engineering of methyltransferases.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00330\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00330","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

丝裂霉素是由链霉菌产生的一类天然分子,具有很强的抗菌和抗肿瘤活性。MitM 是一种参与丝裂霉素生物合成的关键后mitosane修饰酶。此前曾有研究认为,该蛋白作为一种 N-甲基转移酶,可催化丝裂霉素 A 和丝裂霉素中间体 9a-demethyl-mitomycin A 的氮丙啶甲基化。MitM 识别辅助因子 S-腺苷-l-蛋氨酸(SAM)和底物丝裂霉素 A 的结构基础尚不清楚。在这里,我们测定了 apo-MitM 和 MitM-mitomycin A-S-adenosylhomocysteine (SAH) 三元复合物的晶体结构,分辨率分别为 2.23 和 2.80 Å。我们发现 MitM 采用一类 SAM 依赖性甲基转移酶折叠,并在溶液中形成同源二聚体。一系列参与形成活性口袋的残基发生了构象变化,这有助于 MitM 与 SAH 和丝裂霉素 A 结合。当丝裂霉素 A 结合时,该环路的弯曲方向发生逆转,使活性位点的入口从开放变为封闭。这项研究从结构上揭示了 MitM 参与丝裂霉素生物合成的后mitosane 阶段,并为甲基转移酶的工程设计提供了模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural Basis of Substrate Recognition by the Postmitosane Modification Enzyme MitM in Mitomycin Biosynthesis.

Mitomycins make up a class of natural molecules produced by Streptomyces with strong antibacterial and antitumor activities. MitM is a key postmitosane modification enzyme involved in mitomycin biosynthesis in Streptomyces caespitosus. This protein was previously suggested to catalyze the aziridinium methylation of mitomycin A and the mitomycin intermediate 9a-demethyl-mitomycin A as an N-methyltransferase. The structural basis for MitM to recognize cofactor S-adenosyl-l-methionine (SAM) and substrate mitomycin A is unknown. Here, we determined the crystal structures of apo-MitM and MitM-mitomycin A-S-adenosylhomocysteine (SAH) ternary complexes with resolutions of 2.23 and 2.80 Å, respectively. We found that MitM adopts a class I SAM-dependent methyltransferase fold and forms a homodimer in solution. Conformational changes in a series of residues involved in the formation of active pockets assist MitM in binding SAH and mitomycin A. In particular, the 28ALGAASLGE36 loop changes most significantly. When mitomycin A binds, the bending direction of this loop is reversed, changing the entrance of the active site from open to closed. This study provides structural insights into MitM's involvement in the postmitosane stage of mitomycin biosynthesis and provides a template for the engineering of methyltransferases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Cocrystallization of the Src-Family Kinase Hck with the ATP-Site Inhibitor A-419259 Stabilizes an Extended Activation Loop Conformation. Small Molecular Approaches for Cellular Reprogramming and Tissue Engineering: Functions as Mediators of the Cell Signaling Pathway. Human CSTF2 RNA Recognition Motif Domain Binds to a U-Rich RNA Sequence through a Multistep Binding Process. Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1