{"title":"利用 1-aminoundecyl 基团化学键合硅胶柱,通过离子色谱法分离海水中的碘酸根、溴化物、亚硝酸盐、硝酸盐和碘化物。","authors":"Kazuaki Ito, Michinari Noguchi, Yuuta Horioka, Joji Ohshita, Takeshi Hirokawa","doi":"10.1007/s44211-024-00639-y","DOIUrl":null,"url":null,"abstract":"<div><p>The separation and detection of six common inorganic anions (iodate (IO<sub>3</sub><sup>−</sup>), bromate (BrO<sub>3</sub><sup>−</sup>), bromide (Br<sup>−</sup>), nitrite (NO<sub>2</sub><sup>−</sup>), nitrate (NO<sub>3</sub><sup>−</sup>), and iodide (I<sup>−</sup>)) in pure water and 35 ‰ artificial seawater were examined by ion chromatography (IC). As packing materials of separation columns, 1-aminoundecyl group chemically bonded silica (AUS) gels were prepared. Separation of the anions in pure water was achieved using separation columns (150 mm × 4.6 mm i.d.) packed with the AUS gels, 0.1 M NaCl + 5 mM phosphate buffer (pH 4.5) as eluent, and a UV detector (wavelength 225 nm). The anions in artificial seawater were separated and detected with a 300 mm-long column without interferences by matrix anions such as chloride (Cl<sup>−</sup>) and sulfate (SO<sub>4</sub><sup>2−</sup>). The stationary phases have high-capacity anion-exchange/hydrophilic/hydrophobic interaction mixed-modes. The IC system was applied to five inorganic anions, IO<sub>3</sub><sup>−</sup>, Br<sup>−</sup>, NO<sub>2</sub><sup>−</sup>, NO<sub>3</sub><sup>−</sup>, and I<sup>−</sup> in seawater of the Seto-Inland Sea, Japan. The detection limits (DLs, <i>S</i>/<i>N</i> = 3) were 11 µg L<sup>−1</sup> (IO<sub>3</sub><sup>−</sup>), 93 (Br<sup>−</sup>), 1.3 (NO<sub>2</sub><sup>−</sup>), 1.4 (NO<sub>3</sub><sup>−</sup>), and 1.1 (I<sup>−</sup>) for a 100-µL sample injection.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44211-024-00639-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Separation of iodate, bromide, nitrite, nitrate, and iodide in seawater by ion chromatography using 1-aminoundecyl group chemically bonded silica columns\",\"authors\":\"Kazuaki Ito, Michinari Noguchi, Yuuta Horioka, Joji Ohshita, Takeshi Hirokawa\",\"doi\":\"10.1007/s44211-024-00639-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The separation and detection of six common inorganic anions (iodate (IO<sub>3</sub><sup>−</sup>), bromate (BrO<sub>3</sub><sup>−</sup>), bromide (Br<sup>−</sup>), nitrite (NO<sub>2</sub><sup>−</sup>), nitrate (NO<sub>3</sub><sup>−</sup>), and iodide (I<sup>−</sup>)) in pure water and 35 ‰ artificial seawater were examined by ion chromatography (IC). As packing materials of separation columns, 1-aminoundecyl group chemically bonded silica (AUS) gels were prepared. Separation of the anions in pure water was achieved using separation columns (150 mm × 4.6 mm i.d.) packed with the AUS gels, 0.1 M NaCl + 5 mM phosphate buffer (pH 4.5) as eluent, and a UV detector (wavelength 225 nm). The anions in artificial seawater were separated and detected with a 300 mm-long column without interferences by matrix anions such as chloride (Cl<sup>−</sup>) and sulfate (SO<sub>4</sub><sup>2−</sup>). The stationary phases have high-capacity anion-exchange/hydrophilic/hydrophobic interaction mixed-modes. The IC system was applied to five inorganic anions, IO<sub>3</sub><sup>−</sup>, Br<sup>−</sup>, NO<sub>2</sub><sup>−</sup>, NO<sub>3</sub><sup>−</sup>, and I<sup>−</sup> in seawater of the Seto-Inland Sea, Japan. The detection limits (DLs, <i>S</i>/<i>N</i> = 3) were 11 µg L<sup>−1</sup> (IO<sub>3</sub><sup>−</sup>), 93 (Br<sup>−</sup>), 1.3 (NO<sub>2</sub><sup>−</sup>), 1.4 (NO<sub>3</sub><sup>−</sup>), and 1.1 (I<sup>−</sup>) for a 100-µL sample injection.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7802,\"journal\":{\"name\":\"Analytical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44211-024-00639-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44211-024-00639-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s44211-024-00639-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
利用离子色谱法(IC)研究了纯水和 35 ‰ 人工海水中六种常见无机阴离子(碘酸根(IO3-)、溴酸根(BrO3-)、溴化物(Br-)、亚硝酸根(NO2-)、硝酸根(NO3-)和碘化物(I-))的分离和检测。作为分离柱的填料,制备了 1-aminoundecyl 基团化学键合二氧化硅(AUS)凝胶。使用以 AUS 凝胶、0.1 M NaCl + 5 mM 磷酸盐缓冲液(pH 4.5)为洗脱剂的分离柱(150 mm × 4.6 mm i.d.)和紫外检测器(波长 225 nm)分离纯水中的阴离子。使用 300 毫米长的色谱柱分离和检测人工海水中的阴离子,不会受到氯离子(Cl-)和硫酸根离子(SO42-)等基质阴离子的干扰。固定相具有高容量阴离子交换/亲水/疏水相互作用混合模式。该 IC 系统被应用于日本濑户内海海水中的 IO3-、Br-、NO2-、NO3- 和 I- 五种无机阴离子。注入 100µL 样品的检测限(DLs,S/N = 3)分别为 11 µg L-1(IO3-)、93(Br-)、1.3(NO2-)、1.4(NO3-)和 1.1(I-)。
Separation of iodate, bromide, nitrite, nitrate, and iodide in seawater by ion chromatography using 1-aminoundecyl group chemically bonded silica columns
The separation and detection of six common inorganic anions (iodate (IO3−), bromate (BrO3−), bromide (Br−), nitrite (NO2−), nitrate (NO3−), and iodide (I−)) in pure water and 35 ‰ artificial seawater were examined by ion chromatography (IC). As packing materials of separation columns, 1-aminoundecyl group chemically bonded silica (AUS) gels were prepared. Separation of the anions in pure water was achieved using separation columns (150 mm × 4.6 mm i.d.) packed with the AUS gels, 0.1 M NaCl + 5 mM phosphate buffer (pH 4.5) as eluent, and a UV detector (wavelength 225 nm). The anions in artificial seawater were separated and detected with a 300 mm-long column without interferences by matrix anions such as chloride (Cl−) and sulfate (SO42−). The stationary phases have high-capacity anion-exchange/hydrophilic/hydrophobic interaction mixed-modes. The IC system was applied to five inorganic anions, IO3−, Br−, NO2−, NO3−, and I− in seawater of the Seto-Inland Sea, Japan. The detection limits (DLs, S/N = 3) were 11 µg L−1 (IO3−), 93 (Br−), 1.3 (NO2−), 1.4 (NO3−), and 1.1 (I−) for a 100-µL sample injection.
期刊介绍:
Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods.
This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.