用于个性化心血管生物力学的稳健自动钙化网格划分。

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-08-15 DOI:10.1038/s41746-024-01202-9
Daniel H. Pak, Minliang Liu, Theodore Kim, Caglar Ozturk, Raymond McKay, Ellen T. Roche, Rudolph Gleason, James S. Duncan
{"title":"用于个性化心血管生物力学的稳健自动钙化网格划分。","authors":"Daniel H. Pak, Minliang Liu, Theodore Kim, Caglar Ozturk, Raymond McKay, Ellen T. Roche, Rudolph Gleason, James S. Duncan","doi":"10.1038/s41746-024-01202-9","DOIUrl":null,"url":null,"abstract":"Calcification has significant influence over cardiovascular diseases and interventions. Detailed characterization of calcification is thus desired for predictive modeling, but calcium deposits on cardiovascular structures are still often manually reconstructed for physics-driven simulations. This poses a major bottleneck for large-scale adoption of computational simulations for research or clinical use. To address this, we propose an end-to-end automated image-to-mesh algorithm that enables robust incorporation of patient-specific calcification onto a given cardiovascular tissue mesh. The algorithm provides a substantial speed-up from several hours of manual meshing to ~1 min of automated computation, and it solves an important problem that cannot be addressed with recent template-based meshing techniques. We validated our final calcified tissue meshes with extensive simulations, demonstrating our ability to accurately model patient-specific aortic stenosis and Transcatheter Aortic Valve Replacement. Our method may serve as an important tool for accelerating the development and usage of personalized cardiovascular biomechanics.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":null,"pages":null},"PeriodicalIF":12.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324740/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust automated calcification meshing for personalized cardiovascular biomechanics\",\"authors\":\"Daniel H. Pak, Minliang Liu, Theodore Kim, Caglar Ozturk, Raymond McKay, Ellen T. Roche, Rudolph Gleason, James S. Duncan\",\"doi\":\"10.1038/s41746-024-01202-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calcification has significant influence over cardiovascular diseases and interventions. Detailed characterization of calcification is thus desired for predictive modeling, but calcium deposits on cardiovascular structures are still often manually reconstructed for physics-driven simulations. This poses a major bottleneck for large-scale adoption of computational simulations for research or clinical use. To address this, we propose an end-to-end automated image-to-mesh algorithm that enables robust incorporation of patient-specific calcification onto a given cardiovascular tissue mesh. The algorithm provides a substantial speed-up from several hours of manual meshing to ~1 min of automated computation, and it solves an important problem that cannot be addressed with recent template-based meshing techniques. We validated our final calcified tissue meshes with extensive simulations, demonstrating our ability to accurately model patient-specific aortic stenosis and Transcatheter Aortic Valve Replacement. Our method may serve as an important tool for accelerating the development and usage of personalized cardiovascular biomechanics.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324740/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41746-024-01202-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01202-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

钙化对心血管疾病和干预措施有重大影响。因此,预测建模需要对钙化进行详细描述,但心血管结构上的钙沉积物通常仍需人工重建,以进行物理驱动模拟。这对大规模采用计算模拟进行研究或临床应用构成了重大瓶颈。为解决这一问题,我们提出了一种端到端自动图像到网格算法,该算法可将患者特异性钙化稳健地整合到给定的心血管组织网格中。该算法大大加快了计算速度,从几小时的手动网格划分缩短到约 1 分钟的自动计算,解决了最近基于模板的网格划分技术无法解决的重要问题。我们通过大量的仿真验证了最终的钙化组织网格,证明了我们有能力准确模拟患者特异性主动脉瓣狭窄和经导管主动脉瓣置换术。我们的方法可作为加速开发和使用个性化心血管生物力学的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust automated calcification meshing for personalized cardiovascular biomechanics
Calcification has significant influence over cardiovascular diseases and interventions. Detailed characterization of calcification is thus desired for predictive modeling, but calcium deposits on cardiovascular structures are still often manually reconstructed for physics-driven simulations. This poses a major bottleneck for large-scale adoption of computational simulations for research or clinical use. To address this, we propose an end-to-end automated image-to-mesh algorithm that enables robust incorporation of patient-specific calcification onto a given cardiovascular tissue mesh. The algorithm provides a substantial speed-up from several hours of manual meshing to ~1 min of automated computation, and it solves an important problem that cannot be addressed with recent template-based meshing techniques. We validated our final calcified tissue meshes with extensive simulations, demonstrating our ability to accurately model patient-specific aortic stenosis and Transcatheter Aortic Valve Replacement. Our method may serve as an important tool for accelerating the development and usage of personalized cardiovascular biomechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Automated decision making in Barrett’s oesophagus: development and deployment of a natural language processing tool The adaptation of a single institution diabetes care platform into a nationally available turnkey solution Deep learning based highly accurate transplanted bioengineered corneal equivalent thickness measurement using optical coherence tomography Artificial intelligence applied to coronary artery calcium scans (AI-CAC) significantly improves cardiovascular events prediction Bridging organ transcriptomics for advancing multiple organ toxicity assessment with a generative AI approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1