对症状不确定的病例采取主动/被动大规模筛查方法。

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS PLoS Computational Biology Pub Date : 2024-08-14 eCollection Date: 2024-08-01 DOI:10.1371/journal.pcbi.1012308
Jiayi Lin, Hrayer Aprahamian, George Golovko
{"title":"对症状不确定的病例采取主动/被动大规模筛查方法。","authors":"Jiayi Lin, Hrayer Aprahamian, George Golovko","doi":"10.1371/journal.pcbi.1012308","DOIUrl":null,"url":null,"abstract":"<p><p>We study the problem of mass screening of heterogeneous populations under limited testing budget. Mass screening is an essential tool that arises in various settings, e.g., the COVID-19 pandemic. The objective of mass screening is to classify the entire population as positive or negative for a disease as efficiently and accurately as possible. Under limited budget, testing facilities need to allocate a portion of the budget to target sub-populations (i.e., proactive screening) while reserving the remaining budget to screen for symptomatic cases (i.e., reactive screening). This paper addresses this decision problem by taking advantage of accessible population-level risk information to identify the optimal set of sub-populations for proactive/reactive screening. The framework also incorporates two widely used testing schemes: Individual and Dorfman group testing. By leveraging the special structure of the resulting bilinear optimization problem, we identify key structural properties, which in turn enable us to develop efficient solution schemes. Furthermore, we extend the model to accommodate customized testing schemes across different sub-populations and introduce a highly efficient heuristic solution algorithm for the generalized model. We conduct a comprehensive case study on COVID-19 in the US, utilizing geographically-based data. Numerical results demonstrate a significant improvement of up to 52% in total misclassifications compared to conventional screening strategies. In addition, our case study offers valuable managerial insights regarding the allocation of proactive/reactive measures and budget across diverse geographic regions.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346970/pdf/","citationCount":"0","resultStr":"{\"title\":\"A proactive/reactive mass screening approach with uncertain symptomatic cases.\",\"authors\":\"Jiayi Lin, Hrayer Aprahamian, George Golovko\",\"doi\":\"10.1371/journal.pcbi.1012308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the problem of mass screening of heterogeneous populations under limited testing budget. Mass screening is an essential tool that arises in various settings, e.g., the COVID-19 pandemic. The objective of mass screening is to classify the entire population as positive or negative for a disease as efficiently and accurately as possible. Under limited budget, testing facilities need to allocate a portion of the budget to target sub-populations (i.e., proactive screening) while reserving the remaining budget to screen for symptomatic cases (i.e., reactive screening). This paper addresses this decision problem by taking advantage of accessible population-level risk information to identify the optimal set of sub-populations for proactive/reactive screening. The framework also incorporates two widely used testing schemes: Individual and Dorfman group testing. By leveraging the special structure of the resulting bilinear optimization problem, we identify key structural properties, which in turn enable us to develop efficient solution schemes. Furthermore, we extend the model to accommodate customized testing schemes across different sub-populations and introduce a highly efficient heuristic solution algorithm for the generalized model. We conduct a comprehensive case study on COVID-19 in the US, utilizing geographically-based data. Numerical results demonstrate a significant improvement of up to 52% in total misclassifications compared to conventional screening strategies. In addition, our case study offers valuable managerial insights regarding the allocation of proactive/reactive measures and budget across diverse geographic regions.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346970/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1012308\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012308","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在测试预算有限的情况下对异质人群进行大规模筛查的问题。大规模筛查是在各种情况下出现的重要工具,例如 COVID-19 大流行。大规模筛查的目的是尽可能高效、准确地将整个人群划分为疾病阳性或阴性。在预算有限的情况下,检测机构需要将一部分预算分配给目标亚人群(即主动筛查),同时保留剩余预算用于筛查无症状病例(即被动筛查)。本文通过利用可获取的人群风险信息来确定进行主动/被动筛查的最佳亚人群,从而解决这一决策问题。该框架还纳入了两种广泛使用的检测方案:个人检测和多夫曼群体检测。通过利用由此产生的双线性优化问题的特殊结构,我们确定了关键的结构属性,这反过来又使我们能够开发出高效的求解方案。此外,我们还对模型进行了扩展,以适应不同子群的定制测试方案,并为广义模型引入了一种高效的启发式求解算法。我们利用基于地理位置的数据,对美国 COVID-19 进行了全面的案例研究。数值结果表明,与传统筛查策略相比,总误诊率大幅提高了 52%。此外,我们的案例研究还为不同地理区域的主动/反应措施和预算分配提供了宝贵的管理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A proactive/reactive mass screening approach with uncertain symptomatic cases.

We study the problem of mass screening of heterogeneous populations under limited testing budget. Mass screening is an essential tool that arises in various settings, e.g., the COVID-19 pandemic. The objective of mass screening is to classify the entire population as positive or negative for a disease as efficiently and accurately as possible. Under limited budget, testing facilities need to allocate a portion of the budget to target sub-populations (i.e., proactive screening) while reserving the remaining budget to screen for symptomatic cases (i.e., reactive screening). This paper addresses this decision problem by taking advantage of accessible population-level risk information to identify the optimal set of sub-populations for proactive/reactive screening. The framework also incorporates two widely used testing schemes: Individual and Dorfman group testing. By leveraging the special structure of the resulting bilinear optimization problem, we identify key structural properties, which in turn enable us to develop efficient solution schemes. Furthermore, we extend the model to accommodate customized testing schemes across different sub-populations and introduce a highly efficient heuristic solution algorithm for the generalized model. We conduct a comprehensive case study on COVID-19 in the US, utilizing geographically-based data. Numerical results demonstrate a significant improvement of up to 52% in total misclassifications compared to conventional screening strategies. In addition, our case study offers valuable managerial insights regarding the allocation of proactive/reactive measures and budget across diverse geographic regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
A computational analysis of the oncogenic and anti-tumor immunity role of P4HA3 in human cancers. Assessing the effect of model specification and prior sensitivity on Bayesian tests of temporal signal. During haptic communication, the central nervous system compensates distinctly for delay and noise. Structure-aware annotation of leucine-rich repeat domains. A mechanistic model of in vitro plasma activation to evaluate therapeutic kallikrein-kinin system inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1