{"title":"在小鼠模型中使用含有布鲁氏菌重组触发因子/Bp26/Omp31嵌合蛋白的niosome和甘露糖化niosome进行鼻内和腹膜内免疫以预防布鲁氏菌感染。","authors":"Fahimeh Sharif, Razieh Nazari, Mahdi Fasihi-Ramandi, Ramezan Ali Taheri, Mohsen Zargar","doi":"10.7774/cevr.2024.13.3.232","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Brucellosis, a zoonotic infectious disease, is a worldwide health issue affecting animals and humans. No effective human vaccine and the complications caused by the use of animal vaccines are among the factors that have prevented the eradication of the disease worldwide. However, bio-engineering technologies have paved the way for designing new targeted and highly efficacious vaccines. In this regard, the study aimed to evaluate immunity induced by mannosylated niosome containing <i>Brucella</i> recombinant trigger factor/Bp26/Omp31 (rTBO) chimeric protein in a mouse model.</p><p><strong>Materials and methods: </strong>rTBO as chimeric antigen (Ag) was expressed in <i>Escherichia coli</i> BL21 (DE3) and, after purification, loaded on niosome and mannosylated niosome. The characteristics of the nanoparticles were assessed. The mice were immunized using rTBO, niosome, and mannosylated niosome-rTBO in intranasal and intraperitoneal routes. Serum antibodies (immunoglobulin [Ig]A, IgG, IgG1, and IgG2a) and splenocyte cytokines (interferon-gamma, interleukin [IL]-4, and IL-12) were evaluated in immunized mice. Finally, immunized mice were challenged by <i>B. melitensis</i> and <i>B. abortus</i>. A high antibody level was produced by niosomal antigen (Nio-Ag) and mannosylated noisomal antigen (Nio-Man-Ag) compared to the control after 10, 24, and 38 days of immunization. The IgG2a/IgG1 titer ratio for Nio-Man-Ag was 1.2 and 1.1 in intraperitoneal and intranasal methods and lower than one in free Ag and Nio-Ag. Cytokine production was significantly higher in the immunized animal with Ag-loaded nanoparticles than in the negative control group (p<0.05). Moreover, cytokine and antibody levels were significantly higher in the injection than in the inhalation method (p<0.05).</p><p><strong>Results: </strong>The combination of mannosylated noisome and rTBO chimeric proteins stimulate the cellular and humoral immune response and produce cytokines, playing a role in developing the protective acquired immune response in the <i>Brucella</i> infectious model. Also, the intraperitoneal route resulted in a successful enhancement of cytokines production more than intranasal administration.</p><p><strong>Conclusion: </strong>Designing an effective vaccine candidate against <i>Brucella</i> that selectively induces cellular and humoral immune response can be done by selecting a suitable nanoniosome formulation as an immunoadjuvant and recombinant protein as an immune response-stimulating Ag.</p>","PeriodicalId":51768,"journal":{"name":"Clinical and Experimental Vaccine Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319111/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intranasal and intraperitoneal immunization against <i>Brucella</i> infection using niosome and mannosylated niosomes containing <i>Brucella</i> recombinant trigger factor/Bp26/Omp31 chimeric protein in a mouse model.\",\"authors\":\"Fahimeh Sharif, Razieh Nazari, Mahdi Fasihi-Ramandi, Ramezan Ali Taheri, Mohsen Zargar\",\"doi\":\"10.7774/cevr.2024.13.3.232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Brucellosis, a zoonotic infectious disease, is a worldwide health issue affecting animals and humans. No effective human vaccine and the complications caused by the use of animal vaccines are among the factors that have prevented the eradication of the disease worldwide. However, bio-engineering technologies have paved the way for designing new targeted and highly efficacious vaccines. In this regard, the study aimed to evaluate immunity induced by mannosylated niosome containing <i>Brucella</i> recombinant trigger factor/Bp26/Omp31 (rTBO) chimeric protein in a mouse model.</p><p><strong>Materials and methods: </strong>rTBO as chimeric antigen (Ag) was expressed in <i>Escherichia coli</i> BL21 (DE3) and, after purification, loaded on niosome and mannosylated niosome. The characteristics of the nanoparticles were assessed. The mice were immunized using rTBO, niosome, and mannosylated niosome-rTBO in intranasal and intraperitoneal routes. Serum antibodies (immunoglobulin [Ig]A, IgG, IgG1, and IgG2a) and splenocyte cytokines (interferon-gamma, interleukin [IL]-4, and IL-12) were evaluated in immunized mice. Finally, immunized mice were challenged by <i>B. melitensis</i> and <i>B. abortus</i>. A high antibody level was produced by niosomal antigen (Nio-Ag) and mannosylated noisomal antigen (Nio-Man-Ag) compared to the control after 10, 24, and 38 days of immunization. The IgG2a/IgG1 titer ratio for Nio-Man-Ag was 1.2 and 1.1 in intraperitoneal and intranasal methods and lower than one in free Ag and Nio-Ag. Cytokine production was significantly higher in the immunized animal with Ag-loaded nanoparticles than in the negative control group (p<0.05). Moreover, cytokine and antibody levels were significantly higher in the injection than in the inhalation method (p<0.05).</p><p><strong>Results: </strong>The combination of mannosylated noisome and rTBO chimeric proteins stimulate the cellular and humoral immune response and produce cytokines, playing a role in developing the protective acquired immune response in the <i>Brucella</i> infectious model. Also, the intraperitoneal route resulted in a successful enhancement of cytokines production more than intranasal administration.</p><p><strong>Conclusion: </strong>Designing an effective vaccine candidate against <i>Brucella</i> that selectively induces cellular and humoral immune response can be done by selecting a suitable nanoniosome formulation as an immunoadjuvant and recombinant protein as an immune response-stimulating Ag.</p>\",\"PeriodicalId\":51768,\"journal\":{\"name\":\"Clinical and Experimental Vaccine Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319111/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Vaccine Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7774/cevr.2024.13.3.232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Vaccine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7774/cevr.2024.13.3.232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Intranasal and intraperitoneal immunization against Brucella infection using niosome and mannosylated niosomes containing Brucella recombinant trigger factor/Bp26/Omp31 chimeric protein in a mouse model.
Purpose: Brucellosis, a zoonotic infectious disease, is a worldwide health issue affecting animals and humans. No effective human vaccine and the complications caused by the use of animal vaccines are among the factors that have prevented the eradication of the disease worldwide. However, bio-engineering technologies have paved the way for designing new targeted and highly efficacious vaccines. In this regard, the study aimed to evaluate immunity induced by mannosylated niosome containing Brucella recombinant trigger factor/Bp26/Omp31 (rTBO) chimeric protein in a mouse model.
Materials and methods: rTBO as chimeric antigen (Ag) was expressed in Escherichia coli BL21 (DE3) and, after purification, loaded on niosome and mannosylated niosome. The characteristics of the nanoparticles were assessed. The mice were immunized using rTBO, niosome, and mannosylated niosome-rTBO in intranasal and intraperitoneal routes. Serum antibodies (immunoglobulin [Ig]A, IgG, IgG1, and IgG2a) and splenocyte cytokines (interferon-gamma, interleukin [IL]-4, and IL-12) were evaluated in immunized mice. Finally, immunized mice were challenged by B. melitensis and B. abortus. A high antibody level was produced by niosomal antigen (Nio-Ag) and mannosylated noisomal antigen (Nio-Man-Ag) compared to the control after 10, 24, and 38 days of immunization. The IgG2a/IgG1 titer ratio for Nio-Man-Ag was 1.2 and 1.1 in intraperitoneal and intranasal methods and lower than one in free Ag and Nio-Ag. Cytokine production was significantly higher in the immunized animal with Ag-loaded nanoparticles than in the negative control group (p<0.05). Moreover, cytokine and antibody levels were significantly higher in the injection than in the inhalation method (p<0.05).
Results: The combination of mannosylated noisome and rTBO chimeric proteins stimulate the cellular and humoral immune response and produce cytokines, playing a role in developing the protective acquired immune response in the Brucella infectious model. Also, the intraperitoneal route resulted in a successful enhancement of cytokines production more than intranasal administration.
Conclusion: Designing an effective vaccine candidate against Brucella that selectively induces cellular and humoral immune response can be done by selecting a suitable nanoniosome formulation as an immunoadjuvant and recombinant protein as an immune response-stimulating Ag.
期刊介绍:
Clin Exp Vaccine Res, the official English journal of the Korean Vaccine Society, is an international, peer reviewed, and open-access journal. It covers all areas related to vaccines and vaccination. Clin Exp Vaccine Res publishes editorials, review articles, special articles, original articles, case reports, brief communications, and correspondences covering a wide range of clinical and experimental subjects including vaccines and vaccination for human and animals against infectious diseases caused by viruses, bacteria, parasites and tumor. The scope of the journal is to disseminate information that may contribute to elaborate vaccine development and vaccination strategies targeting infectious diseases and tumors in human and animals. Relevant topics range from experimental approaches to (pre)clinical trials for the vaccine research based on, but not limited to, basic laboratory, translational, and (pre)clinical investigations, epidemiology of infectious diseases and progression of all aspects in the health related issues. It is published printed and open accessed online issues (https://ecevr.org) two times per year in 31 January and 31 July. Clin Exp Vaccine Res is linked to many international databases and is made freely available to institutions and individuals worldwide