EasyDGL:连续时间动态图学习的编码、训练和解释。

Chao Chen, Haoyu Geng, Nianzu Yang, Xiaokang Yang, Junchi Yan
{"title":"EasyDGL:连续时间动态图学习的编码、训练和解释。","authors":"Chao Chen, Haoyu Geng, Nianzu Yang, Xiaokang Yang, Junchi Yan","doi":"10.1109/TPAMI.2024.3443110","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic graphs arise in various real-world applications, and it is often welcomed to model the dynamics in continuous time domain for its flexibility. This paper aims to design an easy-to-use pipeline (EasyDGL which is also due to its implementation by DGL toolkit) composed of three modules with both strong fitting ability and interpretability, namely encoding, training and interpreting: i) a temporal point process (TPP) modulated attention architecture to endow the continuous-time resolution with the coupled spatiotemporal dynamics of the graph with edge-addition events; ii) a principled loss composed of task-agnostic TPP posterior maximization based on observed events, and a task-aware loss with a masking strategy over dynamic graph, where the tasks include dynamic link prediction, dynamic node classification and node traffic forecasting; iii) interpretation of the outputs (e.g., representations and predictions) with scalable perturbation-based quantitative analysis in the graph Fourier domain, which could comprehensively reflect the behavior of the learned model. Empirical results on public benchmarks show our superior performance for time-conditioned predictive tasks, and in particular EasyDGL can effectively quantify the predictive power of frequency content that a model learns from evolving graph data.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EasyDGL: Encode, Train and Interpret for Continuous-Time Dynamic Graph Learning.\",\"authors\":\"Chao Chen, Haoyu Geng, Nianzu Yang, Xiaokang Yang, Junchi Yan\",\"doi\":\"10.1109/TPAMI.2024.3443110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dynamic graphs arise in various real-world applications, and it is often welcomed to model the dynamics in continuous time domain for its flexibility. This paper aims to design an easy-to-use pipeline (EasyDGL which is also due to its implementation by DGL toolkit) composed of three modules with both strong fitting ability and interpretability, namely encoding, training and interpreting: i) a temporal point process (TPP) modulated attention architecture to endow the continuous-time resolution with the coupled spatiotemporal dynamics of the graph with edge-addition events; ii) a principled loss composed of task-agnostic TPP posterior maximization based on observed events, and a task-aware loss with a masking strategy over dynamic graph, where the tasks include dynamic link prediction, dynamic node classification and node traffic forecasting; iii) interpretation of the outputs (e.g., representations and predictions) with scalable perturbation-based quantitative analysis in the graph Fourier domain, which could comprehensively reflect the behavior of the learned model. Empirical results on public benchmarks show our superior performance for time-conditioned predictive tasks, and in particular EasyDGL can effectively quantify the predictive power of frequency content that a model learns from evolving graph data.</p>\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPAMI.2024.3443110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2024.3443110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在现实世界的各种应用中都会出现动态图,在连续时域中建立动态模型因其灵活性而受到欢迎。本文旨在设计一种易于使用的管道(EasyDGL,这也是由于它是由 DGL 工具包实现的),它由三个既有强大拟合能力又有可解释性的模块组成,即编码、训练和解释:i) 时点过程(TPP)调制注意力架构,赋予连续时间分辨率与图的时空动态耦合边缘添加事件;ii) 原则性损耗,包括基于观测事件的任务无关 TPP 后验最大化,以及在动态图上采用掩码策略的任务感知损耗,其中任务包括动态链接预测、动态节点分类和节点流量预测;iii) 输出解释(例如,在图中对节点流量进行预测)。g.,iii) 在图傅立叶域中使用可扩展的基于扰动的定量分析来解释输出(如表示和预测),这可以全面反映所学模型的行为。公共基准的实证结果表明,我们在时间条件预测任务方面表现出色,尤其是 EasyDGL 可以有效量化模型从不断变化的图数据中学到的频率内容的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EasyDGL: Encode, Train and Interpret for Continuous-Time Dynamic Graph Learning.

Dynamic graphs arise in various real-world applications, and it is often welcomed to model the dynamics in continuous time domain for its flexibility. This paper aims to design an easy-to-use pipeline (EasyDGL which is also due to its implementation by DGL toolkit) composed of three modules with both strong fitting ability and interpretability, namely encoding, training and interpreting: i) a temporal point process (TPP) modulated attention architecture to endow the continuous-time resolution with the coupled spatiotemporal dynamics of the graph with edge-addition events; ii) a principled loss composed of task-agnostic TPP posterior maximization based on observed events, and a task-aware loss with a masking strategy over dynamic graph, where the tasks include dynamic link prediction, dynamic node classification and node traffic forecasting; iii) interpretation of the outputs (e.g., representations and predictions) with scalable perturbation-based quantitative analysis in the graph Fourier domain, which could comprehensively reflect the behavior of the learned model. Empirical results on public benchmarks show our superior performance for time-conditioned predictive tasks, and in particular EasyDGL can effectively quantify the predictive power of frequency content that a model learns from evolving graph data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diversifying Policies with Non-Markov Dispersion to Expand the Solution Space. Integrating Neural Radiance Fields End-to-End for Cognitive Visuomotor Navigation. Variational Label Enhancement for Instance-Dependent Partial Label Learning. TagCLIP: Improving Discrimination Ability of Zero-Shot Semantic Segmentation. Efficient Neural Collaborative Search for Pickup and Delivery Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1