Zhongli Xue , Mingyue Xie , Xiaoyuan Li , Dianchang Song , Tonglei Cheng , Fang Wang
{"title":"基于上转换发光技术的微型温度传感器,用于实时监测 GPU 温度","authors":"Zhongli Xue , Mingyue Xie , Xiaoyuan Li , Dianchang Song , Tonglei Cheng , Fang Wang","doi":"10.1016/j.yofte.2024.103944","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a miniaturized optical fiber temperature sensor based on Fluorescence Intensity Ratio (FIR) technology for real-time monitoring of graphics processing unit (GPU) temperature. Utilizing a femtosecond micromachining system, miniature rectangular holes are etched on a standard multimode fiber. These holes are then filled with a mixture of Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped TeO<sub>2</sub>-Na<sub>2</sub>CO<sub>3</sub>-ZnO powder and polydimethylsiloxane (PDMS) through capillary action, forming a sandwich structure. When illuminated by a 980 nm light source, upconversion (UC) fluorescence is generated, and a mathematical model correlating the fluorescence intensity ratio of two adjacent energy levels with temperature is established. The fundamental temperature sensing characteristics of the sensor are tested in a temperature-controlled chamber, with a maximum error of ± 1 K. The sensor is also applied to a GPU with real-time temperature variations, demonstrating a maximum error of 0.9 K and a response time of 1.96 s. The sensor not only possesses the advantages of a simple structure, micro size, and convenient fabrication but also exhibits immunity to electromagnetic interference, rapid response, good stability, and excellent repeatability in real-time monitoring of GPU temperature, showing potential for large-scale application.</p></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"87 ","pages":"Article 103944"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A miniature temperature sensor based on upconversion luminescence for real-time GPU temperature monitoring\",\"authors\":\"Zhongli Xue , Mingyue Xie , Xiaoyuan Li , Dianchang Song , Tonglei Cheng , Fang Wang\",\"doi\":\"10.1016/j.yofte.2024.103944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a miniaturized optical fiber temperature sensor based on Fluorescence Intensity Ratio (FIR) technology for real-time monitoring of graphics processing unit (GPU) temperature. Utilizing a femtosecond micromachining system, miniature rectangular holes are etched on a standard multimode fiber. These holes are then filled with a mixture of Er<sup>3+</sup>/Yb<sup>3+</sup> co-doped TeO<sub>2</sub>-Na<sub>2</sub>CO<sub>3</sub>-ZnO powder and polydimethylsiloxane (PDMS) through capillary action, forming a sandwich structure. When illuminated by a 980 nm light source, upconversion (UC) fluorescence is generated, and a mathematical model correlating the fluorescence intensity ratio of two adjacent energy levels with temperature is established. The fundamental temperature sensing characteristics of the sensor are tested in a temperature-controlled chamber, with a maximum error of ± 1 K. The sensor is also applied to a GPU with real-time temperature variations, demonstrating a maximum error of 0.9 K and a response time of 1.96 s. The sensor not only possesses the advantages of a simple structure, micro size, and convenient fabrication but also exhibits immunity to electromagnetic interference, rapid response, good stability, and excellent repeatability in real-time monitoring of GPU temperature, showing potential for large-scale application.</p></div>\",\"PeriodicalId\":19663,\"journal\":{\"name\":\"Optical Fiber Technology\",\"volume\":\"87 \",\"pages\":\"Article 103944\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fiber Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S106852002400289X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106852002400289X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A miniature temperature sensor based on upconversion luminescence for real-time GPU temperature monitoring
This paper introduces a miniaturized optical fiber temperature sensor based on Fluorescence Intensity Ratio (FIR) technology for real-time monitoring of graphics processing unit (GPU) temperature. Utilizing a femtosecond micromachining system, miniature rectangular holes are etched on a standard multimode fiber. These holes are then filled with a mixture of Er3+/Yb3+ co-doped TeO2-Na2CO3-ZnO powder and polydimethylsiloxane (PDMS) through capillary action, forming a sandwich structure. When illuminated by a 980 nm light source, upconversion (UC) fluorescence is generated, and a mathematical model correlating the fluorescence intensity ratio of two adjacent energy levels with temperature is established. The fundamental temperature sensing characteristics of the sensor are tested in a temperature-controlled chamber, with a maximum error of ± 1 K. The sensor is also applied to a GPU with real-time temperature variations, demonstrating a maximum error of 0.9 K and a response time of 1.96 s. The sensor not only possesses the advantages of a simple structure, micro size, and convenient fabrication but also exhibits immunity to electromagnetic interference, rapid response, good stability, and excellent repeatability in real-time monitoring of GPU temperature, showing potential for large-scale application.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.